• Title/Summary/Keyword: mixed-finite element

Search Result 314, Processing Time 0.026 seconds

Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method ( I ) - Development of Weight Function Method - (가중함수법에 의한 기계적 체결홀에 존재하는 타원호형 관통균열의 음력확대계수 해석 ( I ) - 가중함수법의 전개 -)

  • Heo, Seong-Pil;Yang, Won-Ho;Hyeon, Cheol-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1659-1670
    • /
    • 2001
  • It has been reported that cracks at mechanical fastener holes usually nucleate as elliptical corner cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. The weight function method is an efficient technique to calculate the stress intensity factors fur elliptical cracks using uncracked stress field. In this study the weight function method for three dimensional mixed-mode problem applied to elliptical comer cracks Is modified for elliptical arc through cracks and the stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by the weight function method. This study consists of two parts and in part I , the weight function method for elliptical arc through cracks is developed and verified.

Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint (십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF

Durability Evaluation of Gangway Connections for the High Speed Railway Vehicles (고속철도차량 갱웨이 통로연결막의 내구성 평가)

  • Kang, Gil-Hyun;Woo, Chang-Su;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4796-4801
    • /
    • 2014
  • To increase the riding comfort and running stability of articulated type high speed railway vehicles(HSRV), it is important that the gangway connections for the passenger car satisfied fire safety, sound proof and durability under triaxial angular displacement (rolling/yawing/pitching) modes. On the other hand, a domestic test standard on the durability of the rubber components has not been determined. In this study, the fatigue life was predicted using the results of the nonlinear finite element analysis and the fatigue properties. Moreover, a fatigue rig test of the component was constructed to examine the durability.

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

Flexural behavior of RC beams made with basalt and polypropylene fibers: Experimental and numerical study

  • Murad, Yasmin Z.;Abdel-Jabar, Haneen
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2022
  • The effect of basalt and polypropylene fibers on the flexural behavior of reinforced concrete (RC) beams is investigated in this paper. The compressive and tensile behaviors of the basalt concrete and polypropylene concrete cylinders are also investigated. Eight beams and 28 cylinders were made with different percentages of basalt and polypropylene fibers. The dosages of fiber were selected as 0.6%, 1.3%, and 2.5% of the total cement weight. Each type of fiber was mixed solely with the concrete mix. Basalt and polypropylene fibers are modern and cheap materials that can be used to improve the structural behavior of RC members. This research is designed to find the optimum percentage of basalt and polypropylene fibers for enhancing the flexural behavior of RC beams. Test results showed that the addition of basalt and polypropylene fibers in any dosage (0.6%, 1.3%, and 2.5%) can increase the flexural strength and displacement ductility index of the beams where the maximum enhancement was measured with 1.3% fibers. The maximum increments in the flexural strength and the displacement ductility index were 30.39% and 260% for the basalt fiber case, while the maximum improvement for the polypropylene fibers case was 55.5% and 230% compared to the control specimen. Finite element (FE) models were then developed in ABAQUS to predict the numerical behaviour of the tested beams. The FE models were able to predict the experimental behaviour with reasonable accuracy. This research confirms the efficiency of basalt and polypropylene fibers in enhancing the flexural behavior of RC beams, and it also suggests the optimum dosage of fibers.

A Study on Stability Evaluation of the Nail-Anchor Mixed Support System

  • Kim, Hong-Taek;Cho, Yong-Kwon;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.41-70
    • /
    • 1999
  • The benefits of utilizing internal reinforced members, such as soil nails and ground anchors, in maintaining stable excavations and slopes have been known among geotechnical engineers to be very effective. Occasionally, however, both soil nails and ground anchors are simultaneously used in one excavation site. In the present study, a method of limit equilibrium stability analysis of the excavation zone reinforced with the vertically or horizontally mixed nail-anchor system is proposed to evaluate the global safety factor with respect to a sliding failure. The postulated failure wedges are determined based on the results of the $FLAC^{2D}\; 및\; FLAC^{3D}$ program analyses. This study also deals with a determination of the required thickness of the shotcrete facing. An excessive facing thickness may be required due to both the stress concentration and the relative displacement at the interface zone between the soil nailing system and the ground anchor system. A simple finite element method of analysis is presented to estimate the corresponding relative displacement at the interface zone between two different support systems. As an efficient resolution to reduce the facing thickness, the modified bearing plate system is also proposed. Finally with various analysis related to the effects of design parameters, the predicted displacements are compared with the results of the $FLAC^{2D}$ program analyses.

  • PDF

Nonlinear Three-dimensional Analysis of Piled Piers Considering Coupled Cap Rigidities (교량 말뚝기초의 캡강성을 고려한 비선형 3차원 해석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.19-30
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method was developed by considering complex behavior of sub-structures (pile-soil-cap) which included soil nonlinearity and the behavior of super-structure (pier). As an intermediate analysis method between FBPier 3.0 and Group 0.0, it took advantages of each method. Among the components of a pile group, individual piles were modeled with stiffness matrices of pile heads and soils with nonlinear load-transfer curves (t-z, q-z and p-y curves). A pile cap was modeled with modified four-node flat shell elements and a pier with three-dimensional beam element, so that a unified analysis could be possible. A nonlinear analysis method was proposed in this study with a mixed incremental and iteration techniques. The proposed method for a pile group subjected to axial and lateral loads was compared with othe. analytical methods (i.e., Group 6.0 and FBPier 3.0). It was found that the proposed method could predict the complex behavior of a pile group well, even though piles were modelled simply in this study by using pile head stiffness matrices which were different from the method introduced in FBPier 3.0.

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.

The Mixed Finite Element Analysis for Nearly Incompressible and Impermeable Porous Media Using Parallel Algorithm (병렬알고리즘 이용한 비압축, 비투과성 포화 다공질매체의 혼합유한요소해석)

  • Tak, Moon-Ho;Kang, Yoon-Sik;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.361-368
    • /
    • 2010
  • In this paper, the parallel algorithm using MPI(Message-Passing Interface) library is introduced in order to improve numerical efficiency for the staggered method for nearly incompressible and impermeable porous media which was introduced by Park and Tak(2010). The porous media theory and the staggered method are also briefly introduced in this paper. Moreover, we account for MPI library for blocking, non-blocking, and collective communication, and propose combined the staggered method with the blocking and nonblocking MPI library. And then, we present how to allocate CPUs on the staggered method and the MPI library, which is related with the numerical efficiency in order to solve unknown variables on nearly incompressible and impermeable porous media. Finally, the results comparing serial solution with parallel solution are verified by 2 dimensional saturated porous model according to the number of FEM meshes.

Behavior of the Crack Initiation, Transition and Fatigue Crack Growth of Rail Steel (레일강의 균열발생·천이 및 피로균열진전거동)

  • Lee, Jong Sun;Kang, Ki Weon;Choi, Rin;Kim, Jung Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.33-42
    • /
    • 1999
  • In the present study, crack initiation criteria, static failure and tensile mode fatigue behavior for a rail steel are evaluated to assure the railway vehicle's safety. The transverse fissure, which is the most critical damage in the rail, is initiated by the maximum shear stress and its location is subsurface. In addition, the possibility of transition from the shear mode to the mixed mode increases with increasing the length of subsurface crack. Because of the brittleness by the welding, the fracture toughness of the welded part is lower than of the base metal. For low ${\Delta}K$, the stage II fatigue crack growth rates of the welded part is slower than of the base metal but, for high ${\Delta}K$, this different behavior for fatigue crack growth rate is nearly diminished. These trends are more remarkable for low stress ratio, R=0.1. It is believed that this behavior is caused by the change of the microstructure which that of the welded part is coarser than of base metal.

  • PDF