• Title/Summary/Keyword: mixed structure.

Search Result 1,972, Processing Time 0.03 seconds

A study on crystalline control of zinc crystal glaze for ceramics (도자기용 아연결정 유약의 결정 제어를 위한 연구)

  • Hyun-Soo Lee;Chi Youn Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.234-243
    • /
    • 2023
  • Zinc crystals of ZnO and SiO2 in glaze raw materials, developed according to composition and firing requirements, are preferred because of their high decorative properties. However, most zinc crystal glazes have a high firing temperature and a narrow firing temperature range, making it difficult to use them as commercial glazes in ceramics. Therefore, in this study, it was expected that the firing temperature of a typical zinc crystal glaze could be lowered to below 1270℃ by using the eutectic effect through mixing frit, the main raw material used in manufacturing zinc crystal glaze. As a result, not only was the formation temperature of zinc crystals lower in the mixed frit glaze, but also the firing temperature range was widened to 1230~1270℃, making it possible to develop a glaze that produces crystals stably. The firing temperature was lowered to 1230~1250℃ and the holding temperature during cooling was lowered to about 950℃, resulting in the development of an economically effective glaze. When using a combination of frit, it has been shown that the holding temperature during cooling affects the recrystallization of zinc crystals depending on the composition of the glaze, and the crystal structure can be adjusted at this time. Additionally, the amount and shape of crystals can be controlled by using a nucleating agent.

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

Effect of Ethanol Fractionation of Lignin on the Physicochemical Properties of Lignin-Based Polyurethane Film

  • Sungwook WON;Junsik BANG;Sang-Woo PARK;Jungkyu KIM;Minjung JUNG;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.221-233
    • /
    • 2024
  • Lignin, a prominent constituent of woody biomass, is abundant in nature, cost-effective, and contains various functional groups, including hydroxyl groups. Owing to these characteristics, they have the potential to replace petroleum-based polyols in the polyurethane industry, offering a solution to environmental problems linked to resource depletion and CO2 emissions. However, the structural complexity and low reactivity of lignin present challenges for its direct application in polyurethane materials. In this study, Kraft lignin (KL), a representative technical lignin, was fractionated with ethanol, an eco-friendly solvent, and mixed with conventional polyols in varying proportions to produce polyurethane films. The results of ethanol fractionation showed that the polydispersity of ethanol-soluble lignin (ESL) decreased from 3.71 to 2.72 and the hydroxyl content of ESL increased from 4.20 mmol/g to 5.49 mmol/g. Consequently, the polyurethane prepared by adding ESL was superior to the KL-based film, exhibiting improved miscibility with petrochemical-based polyols and reactivity with isocyanate groups. Consequently, the films using ESL as the polyol exhibited reduced shrinkage and a more uniform structure. Optical microscope and scanning electron microscope observations confirmed that lignin aggregation was lower in polyurethane with ESL than in that with KL. When the hydrophobicity of the samples was measured using the water contact angle, the addition of ESL resulted in higher hydrophobicity. In addition, as the amount of ESL added increased, an increase of 7.4% in the residual char was observed, and a 4.04% increase in Tmax the thermal stability of the produced polyurethane was effectively improved.

Experimental Study on the Adhesion and Performance Evaluation of Joints for Modified Polyethylene Coated Steel Pipes (개질 폴리에틸렌 코팅 강관의 부착 및 체결부 성능 평가 연구)

  • Myung Kue Lee;Sanghwan Cho;Min Ook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • In this study, as part of the development of a monitoring system for the efficient maintenance of steel pipes, an experimental study was conducted to evaluate the performance of steel pipes treated with modified polyethylene coating. In the case of the conventional mechanical pre-coating method, there was a deterioration in polyethylene adhesion during expansion testing, which led to the application of a chemical pre-treatment process using a calcium-mixed phosphate zinc film to resolve this issue. SEM and EDX analyses showed that the densest structure was observed at a Zn/Ca ratio of 1.0, and improved heat resistance compared to the conventional method was confirmed. Additionally, to prevent coating detachment during expansion, an evaluation of adhesion and elongation was conducted on steel pipes with modified polyethylene coating, incorporating materials such as elastomers based on maleic anhydride grafting, metal oxides, blocking agents, and slip agents. Experimental results showed that the specimen (S4) containing all modified materials exhibited more than a 25% performance improvement compared to the specimen (S2) containing only metal oxides. Lastly, the development and performance evaluation of wedge-shaped socketing and pressing wheels, which are part of the pipe fixing accessories, were conducted to prevent surface coating damage on the completed pipes.

Effects of feeding different levels of dietary corn silage on growth performance, rumen fermentation and bacterial community of post-weaning dairy calves

  • Lingyan Li;Jiachen Qu;Huan Zhu;Yuqin Liu;Jianhao Wu;Guang Shao;Xianchao Guan;Yongli Qu
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.261-273
    • /
    • 2024
  • Objective: The objective of this study was to evaluate the growth performance, rumen fermentation parameters and bacterial community of post-weaning dairy calves in response to five diets varying in corn silage (CS) inclusion. Methods: A total of forty Holstein weaned bull calves (80±3 days of age;128.2±5.03 kg at study initiation) were randomized into five groups (8 calves/group) with each receiving one of five dietary treatments offered as total mixed ration in a 123-d feeding study. Dietary treatments were control diet (CON; 0% CS dry matter [DM]); Treatment 1 (T1; 27.2% CS DM); Treatment 2 (T2; 46.5% CS DM); Treatment 3 (T3; 54.8% CS DM); and Treatment 4 (T4; 67.2% CS DM) with all diets balanced for similar protein and energy concentration. Results: Results showed that calves offered CS had greater average daily gain, body length and chest depth growth, meanwhile altered rumen fermentation indicated by decreased rumen acetate concentrations. Principal coordinate analysis showed the rumen bacterial community structure was affected by varying CS inclusion diets. Bacteroidetes and Firmicutes were the predominant bacterial phyla in the calf rumens across all treatments. At the genus level, the abundance of Bacteroidales_RF16_group was increased, whereas Unclassified_Lachnospiraceae was decreased for calves fed CS. Furthermore, Spearman's correlation test between the rumen bacteria and rumen fermentation parameters indicated that Bacteroidales_RF16_group and Unclassified Lachnospiraceae were positively correlated with propionate and acetate, respectively. Conclusion: The results of the current study suggested that diet CS inclusion was beneficial for post-weaning dairy calf growth, with 27.2% to 46.5% CS of diet DM recommended to achieve improved growth performance. Bacteroidales_RF16_group and Unclassified Lachnospiraceae play an important role in the rumen fermentation pattern for post-weaning calves fed CS.

Type of Oil and Effect of Required HLB on Nanoemulsion Formation (오일의 종류 및 required HLB가 나노에멀젼 형성에 미치는 영향)

  • Da-yeon Lee;Hye-yun Hwang;Su-min Lim;Hy-ein Jang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1533-1546
    • /
    • 2023
  • Nanoemulsion is an emulsion with a particle size of about 20 ~ 200 nm and has the advantage of having a transparent or translucent appearance and improving the skin permeability of an effective material with a small particle size, so it is applied in various fields. In this study, eight oils with different types of HLB and 16 oils with different types of required HLB were selected to investigate the effect of the required HLB and the type on the formation of nanoemulsion. The surfactants used at this time were Polysorbate 60 (HLB 14.9), Sorbitan state (HLB 4.7), PEG-60 hydrogenated castor oil (HLB 14.0), which were mixed with Polysorbate 60 and Sorbitan state, fixed with HLB 14.0, and Polysorbate 60 and PEG-60 hydrogenated castor oil, respectively. The formation of nanoemulsion was different depending on the type of oil, and oil with an ester structure showed a relatively excellent nanoemulsion formation ability. In particular, it was confirmed that a stable nanoemulsion was formed without a significant change after Cetyl ethylhexanoin was produced in a small size of 40 nm or less on average. In addition, it was found that using a mixture of Polysorbate 60 and Sorbitan stearate has a superior nanoemulsion formation ability than using PEG-60 hydrogenated castor oil or Polysorbate 60 alone.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

Vegetation Structure of Evergreen Broad-Leaved forest in Dongbaekdongsan(Mt.), Jeju-Do, Korea (제주도 동백동산 상록활엽수림의 식생구조)

  • Han, Bong-Ho;Kim, Jong-Yup;Choi, In-Tae;Lee, Kyong-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.4
    • /
    • pp.336-346
    • /
    • 2007
  • This study was conducted to evaluate the vegetation structure of 34 plots for inspection(plot unit: $100m^2$)of evergreen broad-leaved forest in Dongbaekdongsan(Mt.), Jeju-do, Korea. In accordance with the results of TWINSPAN and mean importance percentage analysis, the target forest was aged $28{\sim}52$, and classified into seven community types in total: Ilex rotunda community, Castanopsis sieboldii community, Castanopsis sieboldii-Quercus glauca community, Quercus glauca-Castanopsis sieboldii community, Quercus glauca community, Quercus glauca-Camellia japonica community, and Quercus glauca-Styrax japonica community. According to the results of importance percentage analysis and DBH class distribution of major woody species, the vegetational aspects showed that the dominant species were Castanopsis sieboldii and Quercus glauca in the canopy layer and Camellia japonica in the subordinate layer. Ilex rotunda and Quercus glauca-Styrax japonica community were damaged vegetation in the canopy layer. According to the index of Shannon's diversity in the six communities including the dominant species - Quercus glauca and Castanopsis sieboldii, their species diversity degree was $0.8745{\sim}1.3018$ and that of Ilex rotunda community was the lowest 0.7619. Camellia japonica, Eurya japonica, Ilex rotunda, Trachelospermum asiaticum var. intermedium, Ardisia crenata appeared in all the seven communities. In addition, Litsea coreana and Cinnamomum japonicum as well as Neolitsea serica presumed as climax species in the warm temperate climate also appeared and the constancy ratio of Cinnamomum japonicum was more than 80%. As a result, the target forest in Dongbaekdongsan(Mt.) was mainly compose of Castanopsis sieboldii and Quercus glauca in the canopy layer as a mixed vegetational pattern, and Cameliia japonica was dominant in the subordinate layer. Continuous monitoring was required, since Camellia japonica was strong in the subordinate layer in contrast to the weakness of Litsea coreana and Neolitsea serica reported as the species of climax stage in the forest with Evergreen Broad-leaved Vegetation at a viewpoint of successional direction.

Species Composition Dynamics and Seedling Density Along Altitudinal Gradients in Coniferous Forests of Seorak Mountain (설악산 상록침엽수림의 고도별 종조성 및 치수 밀도 변화)

  • Kim, Ji-Dong;Byeon, Seong Yeob;Song, Ju Hyeon;Chae, Seung Beom;Kim, Ho Jin;Lee, Jeong Eun;Yun, I Seul;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.115-123
    • /
    • 2020
  • The vertical distribution of vegetation can be classified according to the altitudinal gradient and the distribution of species along this gradient. The purpose of this study was to analyze the vegetation structure, species composition, dimensional density, and change according to altitude. These data illustrate the distribution of coniferous forest by altitude. By order of importance, the vegetation structure of this mixed forest consisted of Abies nephrolepis (12.2), Pinus koraiensis (10.86), and Acer komarovii (8.11). As a result of species composition according to the altitude, A. nephrolepis and Maianthemum bifolium increased in importance with increasing altitude. Tripterygium regelii emerged between 1,400 m and 1,600 m, which indicates that forest gaps were frequent at that elevation. The species diversity index was the highest from 1,400-1,500 m and coincided with the presence of forest gaps. The changes in A. nephrolepis of evergreen conifers increased significantly from 402 ± 5.4 ha.-1 to 528 ± 11.6 ha.-1 for two years, and decreased from 57 ± 1.3 ha.-1 to 56 ± 1.6 ha.-1 for P. koraiensis. The density of A. nephrolepis and P. koraiensis seedlings significantly increased at 1,500-1,600 m. The results of this study can be used as a basis to identify the mast seeding year with the increase or decrease of seedlings. In addition to documenting the evergreen conifer population of the Seorak Mountain, these results can be built upon for future monitoring of seedlings mortality.

A Study on the Hydrocarbon Dew Point Prediction by the Compositions of the Fuel Gas Mixtures (연료용 혼합가스 조성에 따른 탄화수소 이슬점 예측)

  • Kim, Young-Gu;Choi, Seul-Gi;Ahn, Jung-Jin;Lee, Chang-Eon
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.44-48
    • /
    • 2015
  • The equations of hydrocarbon dew points(DT) of the fuel gas mixtures have been derived using the multiple regression analysis. In QSDR(Quantitative Structure Dew-point Relationship), the principal descriptors are CN(average carbon number) and BI(the ratio of the branched isomers). QSDRs studied by changing the pressures of the fuel gas mixtures in the range of 100 kPa ~ 500 kPa are as follows; $$DT(^{\circ}C)=-683.1+1224.98CN-898.01CN^2+308.58CN^3-49.56CN^4+3.02CN^5-12.42BI$$ (at 100 kPa, $$R_{adj}{^2}=0.99$$) (1) $$DT(^{\circ}C)=-745.2+1351.66CN-978.1CN^2+332.7CN^3-52.96CN^4+3.20CN^5-12.84BI$$ (at 200 kPa, $$R_{adj}{^2}=0.99$$) (2) $$DT(^{\circ}C)=-795.4+1457.1CN-1051.1CN^2+357.53CN^3-57.07CN^4+3.46CN^5-13.10BI$$ (at 300 kPa, $$R_{adj}{^2}=0.99$$) (3) $$DT(^{\circ}C)=-868.1+1608.4CN-1156.0CN^2+393.38CN^3-63.06CN^4+3.85CN^5-13.39BI$$ (at 500 kPa, $$R_{adj}{^2}=0.99$$) (4) As the average carbon numbers in the mixed fuel being reduced or the ratio of the branched isomers having a boiling point lower increase, The hydrocarbon dew point becomes lower, The differences between the hydrocarbon-dew points determined by the multiple regression and those calculated by the commercial program, VMGSim are negligible.