• Title/Summary/Keyword: mixed probiotics

Search Result 69, Processing Time 0.033 seconds

Synbiotic Potential of Yoghurt Manufactured with Probiotic Lactic Acid Bacteria Isolated from Mustard Leaf Kimchi and Prebiotic Fructooligosaccharide (갓김치로부터 분리한 Probiotic 유산균과 Prebiotic Fructooligosaccharide로 제조한 요구르트의 Synbiotic 가능성)

  • Lim, Sung-Mee
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.226-236
    • /
    • 2012
  • In the present work, the influence of prebiotic fructooligosaccharide (FOS) on adhesion to Caco-2 cells, viability, acid and bile tolerance, antibacterial, antioxidant, enzymatic, and metabolic activities of the probiotic starters Lactobacillus acidophilus GK20 and Lactobacillus paracasei GK74, has been explored. Experiments were conducted with fermented yoghurt over a period of 7 days at $4^{\circ}C$. When compared to control fermentations without prebiotic, the addition of FOS was seen to significantly (p<0.05) increase the viable cell counts of the probiotics, overall viscosity, and concurrently reduce the pH of the fermented yoghurts. Both Escherichia coli ATCC 11229 and Salmonella enteritidis ATCC 13076 were inhibited by the probiotics' antibacterial activities, while the synbiotic yoghurt containing mixed probiotics and FOS was noted to highly improve antagonistic action. When fermented with mixed starters, the addition of FOS (1.0%) resulted in the highest proteolytic ($1.06{\pm}0.06$ unit) and ${\beta}$-galactosidase activities ($20.14{\pm}0.31$ unit). However, FOS did not affect acid and bile tolerance, adhesion to Caco-2 cells or the antioxidant activity of the probiotics, although both L. acidophilus GK20 and L. paracasei GK74 had functionality as probiotic strains. Hence, a significant synbiotic effect was observed in fermented yoghurt after 7 days of storage at $4^{\circ}C$, and as a result, such synbiotic yoghurt can be said to possess synergistic actions which improve the gastrointestinal environment and promote of health.

Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells

  • Liu, Yong-Shi;Liu, Qiong;Jiang, Yan-Long;Yang, Wen-Tao;Huang, Hai-Bin;Shi, Chun-Wei;Yang, Gui-Lian;Wang, Chun-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.515-525
    • /
    • 2020
  • Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.

Growth and Physiological Effects of Immunity Feed Additives on the Juvenile Red Sea Cucumber Stichopus japonicus (홍해삼(Stichopus japonicus) 치삼의 성장 및 면역증강을 위한 면역증강사료첨가제의 개발)

  • Namgung, Jin;Ahn, Kyoung-Jin;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.466-473
    • /
    • 2015
  • The juvenile red variant of the sea cucumber Stichopus japonicus is distributed worldwide. It is a valuable food source in Korea, China, and Japan. Major issues in farming the juvenile red variant sea cucumber include growth rates and disease resistance. In recent years, studies have focused on feed additives to enhance immune system and health. In this study, we used a common diet (CD), a nutritional diet (ND; mixed nutritional supplements), and an immunity diet (ID; mixed probiotics, spirulina, and levan) and compared the growth rates and immunity of juvenile red variant sea cucumbers fed the experimental diets for 12 weeks. The growth and survival rates in the ID group were significantly increased (P>0.05). This suggests that the feed additives positively influenced immunity and growth in the ID group. However, the immune activity was exhibit a stabilizing effect, and further investigation of immune effects is required.

Effect of Supplementation of Complex Probiotics on Performances, Physio-chemical Properties of Meat and Intestinal Microflora in Broiler (복합생균제의 급여가 육계의 생산성, 육의 이화학적 특성 및 장내 미생물에 미치는 영향)

  • Yu, D.J.;Na, J.C.;Kim, T.H.;Kim, S.H.;Lee, S.J.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.593-602
    • /
    • 2004
  • A feeding trial was carried out to investigate the effect of supplemental complex probiotics on performances, physio-chemica1 properties of meat and inetestinal microflora in broiler chicks. Four hundred eighty broiler chickens, one days old with mixed sexes were fed one of four diets containing 0, 0.1, 0.2 and 0.4% complex probiotics for 7 weeks. There were four replicates with thirty chicks per pen. Diet contained ME 3,100, 3,l00kcal/kg, and CP 22.0, 20.0% for starting and finishing period, respectively. Body Weight gain of chicks fed the complex probiotics tended to increase from the frist week and all complex probiotics higher than control from the 4th week. Chickens fed the diets containing 0.2% probiotics had higher(P<0.05) than those fed the other levels from the 4th week to 5th week. Feed conversion also improved significantly(P<0.05) in the supplemental 0.2% probiotics from the 4th week to 5th week. In physio-chemica1 properties of meat, carcass rate increased significantly(P<0.05) in the supplemental 0.4% probiotics compared to that of control at 7 weeks overall means and abdominal fat pad rate increased significantly(P< 0.05) in the supplemental 0.2% probiotics compared to that of control. Cooking loss decreased significantly(P<0.05) in the supplemental all probiotics. But shear force increased significantly(P<0.05) in the supplemental 0.4% probiotics. The number of ileum and cecum Lactobacillus spp. tended to increase in the supplemental complex probiotics at 7 week of age, but was not significantly different. As the result, supplemental complex probiotics increased performance and physio-chemica1 properties of meat and the number of intestinal Lactobacillus of broiler chicks.

Effects of Feeding Single or Multiple Probiotics on Performance and Intestinal Microflora of Broiler Chicks (단일 및 혼합 생균제의 급여가 육계의 생산성 및 장내 미생물에 미치는 영향)

  • 류경선;여영수;류명선;박홍석;김상호
    • Korean Journal of Poultry Science
    • /
    • v.28 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • Two experiments were conducted to investigate the effents of feeding single or combined probiltics on performance and intestinal micreflora of broiler chicks for five weeks. Diets based on corn and soybean meal contained 21.50, 19% CP and 3,100, 3,150kcal/kg ME for starting and finishing period, respectively. Lactobacillus salvarius isolated from chicks intestine(LSC), Lactobacillus salvarius isolated from piglet(LSP), Bacillus polyfermenticus(BP) were fed with alone and mixed ones at the level of 0.21 and 0.1% in experiment 1 and 2, respectively. Three hundred eighty four chicks were randomly assigned to eight treatments with four replicates of 12 chicks each per treatment. Weight gain, feed consumption, feed conversion ratio(FCR) were weekly measured for 5 weeks. The number of intestinal micreflora was examined at the end of experiment. In both experiments, weight gain of chicks fed probiltics tended to be similar or higher than control, but was not in LSC+LSP treatment. Feed intake was not consistent among treatments. In experiment 1, FCR of chicks fed LSC alone was the lowest of all treatments, whereas it was significantly higher in LSC+LSP treatments than control(P〈0.05). In experiment 2, LSP supplemental groups tended to increase FCR compared to the control. The number of ileal E. coli was the lowest in LSP alone treatment of experiment 1, whereas cecal E. coli was higher concentration in probiotics supplemental groups than control. Total Lactobacillus of chicks fed probiotics was decreased in ileum, but was no consestency in cecum. In experiment 2, ileal total yeast tended to be higher in probiotics supplemental groups except LSP alone supplement than control. Total Lactobacillus of chicks fed LSC or LSP alone treatments was significantly higher than control(P〈0.05).

  • PDF

Effects of Complex Probiotics on Productivity Index, Fatty Acid Composition and Immune Response in Broilers (복합 생균제가 육계의 생산성, 육질, 지방산 조성 및 면역 반응에 미치는 영향)

  • Siddiqui, Sharif Hasan;Hwang, Chae Yeon;Choe, Ho-Sung;Shim, Kwan-Seob
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.3
    • /
    • pp.431-447
    • /
    • 2020
  • This study was conducted to investigate the efficacy of mixed probiotic on the immunity, productivity index and mortality rate in the broiler. Total of 120 one-day-old Ross broilers chicks were randomly assigned into two treatments (control dietary group and probiotic-treated group) with three replications of each treatment. The probiotic group broiler had a lower mortality rate than control during the experimental period. The productivity index in the probiotic group increased significantly than the control group. The weight of the bursa of fabricius was high in the probiotic-treated group than the control group. Activated the immunity level after fed the probiotic mixed diet compared to the control group. Furthermore, the probiotic diet significantly decreased the saturated fatty the control group. Whereas the probiotic mixed diet increased the unsaturated fatty acid than the control group. Afterward, the diet including probiotic induced positive impact on broilers immunity level. This indicates that a probiotic mixed diet could be protecting the intestine from the invasion of a pathogenic organism. It would be beneficial to the poultry industries by decrease the broiler mortality rate with elevated the immunity.

Effects of Synbiotics Containing Anaerobic Microbes and Prebiotics on In vitro Fermentation Characteristics and In situ Disappearance Rate of Fermented-TMR

  • Lee, Shin-Ja;Shin, Nyeon-Hak;Chu, Gyo-Moon;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1577-1586
    • /
    • 2011
  • This study was carried out to estimate effects of synbiotics containing anaerobic microorganisms and prebiotics on in vitro fermentation characteristics and in situ disappearance rate of fermented total mixed ration (F-TMR). For the in vitro trial, ninety vinyl bags were prepared to analyze temperature, pH, ammonia concentration, microbial growth rate and short chain fatty acid concentration. For the in situ trial, one hundred twenty nylon bags were prepared to analyze dry matter (DM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) disappearance rate. Treatments consisted of a basal diet (US) with prebiotics and probiotics from anaerobic mold (MS), bacteria (BS), yeast (YS) or compound (CS). It was found that temperatures at 14 and 21 days were significantly higher (p<0.05) in the YS and CS than in the others. The pH at 21 days was lower in the CS than in the US. The synbiotic treatments had significantly increased (p<0.05) ammonia concentration at 21 days. The DM disappearance at 72 h was significantly higher (p<0.05) in the MS and CS than in the others. ADF and NDF disappearance rate tended to increase at a rate similar to the DM disappearance rate. Therefore, this study suggests that synbiotics (probiotics with prebiotics) may partially help the quality of fermentation and digestibility of TMR (MS and CS) as fiber disappearance.

Shelf-Life Extension and Increase in Survivability of Probiotics Powder by Ultrasonic Treatment (초음파를 이용한 프로바이오틱스 분말의 유통기한 연장 및 생존율 증대 효과)

  • Hong, Dong-Ki;Jung, Seong-Eun;Lee, Myoung-Hee;Lee, Ho-Jin;Lee, Jae-Ho;Na, Guk-Nam;Choi, Il-Dong;Lee, Jung-Lyoul;Sim, Jae-Hun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • The purpose of this study was to investigate the effect of ultrasonic treatment during probiotics production process on the shelf life and the survival rate. Once Lactobacillus plantarum and Bifidobacterium longum were cultured in edible culture medium, ultrasonic treatment was performed at 100 Hz for 1, 2, 5, 7, and 10 minutes. Ultrasonic-treated L. plantarum HY7715 and B. longum HY8001 were centrifuged, mixed with a cryoprotectant, and lyophilized. The prepared lactic acid bacteria powder was individually packaged. After 6 months, viable cell counts were measured separately under cold storage and room temperature. In vitro digestion experiments were performed to determine the survival rate at digestive tract. As a result, it was observed that shelf life and survival rate were increased compared to untreated control group.

A Mixed Formulation of Lactic Acid Bacteria Inhibits Trinitrobenzene-Sulfonic-Acid-Induced Inflammatory Changes of the Colon Tissue in Mice

  • Cha, Yeon Suk;Seo, Jae-Gu;Chung, Myung-Jun;Cho, Chung Won;Youn, Hyun Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1438-1444
    • /
    • 2014
  • Lactic acid bacteria (LAB) are probiotics that provide numerous beneficial effects on the host body, especially on the intestine. Combining several strains of LAB, we prepared a formulation containing four different LAB and studied its anti-inflammatory activity both in vitro and in vivo. The formulation significantly reduced NO production from RAW 264.7 cells treated with bacterial lipopolysaccharide, indicating that the formulation might include anti-inflammatory activity. The formulation also suppressed inflammatory change induced by trinitrobenzene sulfonic acid (TNBS) in mice, where oral or rectal administration of the formulation protected the colon tissue from the damage by TNBS. Expressions of the IL-6 and FasL genes appeared to be down-regulated by the formulation in TNBS-treated colon tissues, suggesting that the suppression of those genes may be involved in the anti-inflammatory activity of the formulation.

Beneficial Effects of Lactobacillus casei ATCC 334 on Halitosis Induced by Periodontopathogens

  • Lee, Ki-Ho;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Halitosis is caused by consumption of certain foods or drinks and production of volatile sulfur compounds (VSCs) by periodontopathogens. VSCs-related halitosis is not easily removed using mechanical or chemical therapies such as dental floss, plaque control and mouth rinse. Lactobacillus are known to be probiotics and stimulate immune systems of human. Furthermore, L. casei ATCC 334 and L. rhamnosus GG have an effect on protection of dental caries in vitro studies. The aim of this study was to investigate effect of Lactobacillus on halitosis by Fusobacterium nucleatum- and Porphyromonas gingivalis-producing VSCs and to analyze inhibitory mechanism. The periodontopathogens were cultivated in the presence or the absence Lactobacillus, and the level of VSCs was measured by gas chromatograph. For analysis of inhibitory mechanisms, the susceptibility assay of the spent culture medium of Lactobacillus against F. nucleatum and P. gingivalis was investigated. Also, the spent culture medium of Lactobacillus and periodontopathogens were mixed, and the emission of VSCs from the spent culture medium was measured by gas chromatograph. L. casei and L. rhamnosus significantly reduced production of VSCs. L. casei and L. rhamnosus exhibited strong antibacterial activity against F. nucleatum and P. gingivalis. The spent culture medium of L. casei inhibited to emit gaseous hydrogen sulfide, methyl mercaptan and dimethyl sulfide from the spent culture medium of periodontopathogens. However, the spent medium of L. rhamnosus repressed only dimethyl sulfide. L. casei ATCC 334 may improve halitosis by growth inhibition of periodontopathogens and reduction of VSCs emission.