• Title/Summary/Keyword: mixed microorganisms

Search Result 218, Processing Time 0.029 seconds

Influences of Surfactant Tween 80 on the Gas Production, Cellulose Digestion and Enzyme Activities by Mixed Rumen Microorganisms

  • Lee, Sung S.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1151-1157
    • /
    • 2003
  • The surfactant Tween 80 was evaluated for its ability to influence cumulative gas production, cellulose digestion, and enzyme activities by mixed ruminal microorganisms grown on barley grain or Orchardgrass hay. The addition of Tween 80 at a level of 0.10% significantly (p<0.05) decreased the cumulative gas production rate from both barley grain or Orchardgrass hay substrates. However, 0.05% Tween 80 did not affect gas production rates compared to the control treatment. The addition of 0.05% Tween 80 to cultures growing on barley grain resulted in a significant increase in cellulase (90.01%), xylanase (90.73%) and amylase (487.25%) activities after 30 h incubation. Cultures utilizing Orchardgrass hay had a significant increase in cellulase (124.43%), xylanase (108.86%) and amylase (271.22%) activities after 72 h incubation. These increases in activities were also observed with cultures supplemented with 0.10% Tween 80 throughout all the incubation times tested. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some of key enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our data indicates potential uses of the surfactant Tween 80 as a feed additive for ruminant animals.

Effect of Plant Growth and Environmental Enhancement of Soils through Nanoparticle Application

  • Kim, Donggiun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.182-187
    • /
    • 2020
  • Silver nanoparticles (AgNPs) have been manufactured in recent years and widely used in various fields. Reactive oxygen species (ROS), which occur in AgNPs, destroy cell membranes. It is widely accepted that ROS generated in this manner inhibit microorganisms growth and causes toxic effects, However, it does not affect cell membranes directly but positively affects growth in plants with cell walls. The nanoball used in this experiment is a new material that generates ROS stably and is used in aqueous solution. Results of this study indicate a 30% increase in yield of Ginseng mixed with culture soil. The analysis of soil condition after cultivation showed that the possibility of repetitive cultivation in soil mixed with Nanoball was high. This suggests that Nanoball is an antimicrobial active material due to the microbial / extermination effect of pathogenic microorganisms. Therefore, there may be potential applications in agricultural cultivation sites as a repetitive cultivation technology that reuses soil.

The Bildegradability of Carrageenan-based Film by Microorganisms (Carrageenan 필름의 미생물에 의한 생분해도 측정)

  • Kang, Seong Gook;Jung, Soon-Teck;Park, Hyun Jin;Rhim, Jong Whan
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.702-709
    • /
    • 1995
  • Degradation Of $\kappa $-carrageenan-based film by microorganisms screened from carrageenan source and activated sludge of a carrageenan producing factory was investigated by measuring changes of pH, viscosity, total sugar and total organic carbon (TOC) of the medium containing $\kappa $-carrageenan as a carbon source. Initially fifteen strains of microorganism were isolated from carrageenan source and activated sludge and then three organisms among them were selected based on the ability of growing in the medium including 0.3% $\kappa $-carrageenan as a sole carbon source. They were identified as Escherichia coli, Saccharomyces cerevisiae and Aspergillus niger. As indices of biodegradability Of $\kappa $-carrageenan based film, the changes of pH, viscosity, total sugar, and TOC of the carrageenan film-based medium were tested by the cultivation of single or mixed strains of the identified organisms. Mixed culture showed the highest biodegradability, which resulted in the changes of pH from 6.5 to 3.0, viscosity from 164 cps to 15.6 cps, total sugar content from 2.35 g/l to 0.53 g/l and TOC from 5721 ppm to 232 ppm after 30 days of cultivation. The biodegradability determined as the reduction rate of TOC by pure cultures of Asp. niger, E. coli, Sacch. cerevisiae and mixed culture of the three organisms were 94%, 86%, 80% and 96%, respectively.

  • PDF

Isolating Microorganisms to Ferment Traditional Cheongtaejeon (발효차 청태전 제조용 미생물의 분리)

  • Park, Jung-Suk;Cho, Jung-Il
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.2
    • /
    • pp.190-197
    • /
    • 2011
  • Chungtaejeon is a traditional tea introduced in the age of the Three States and is the only "Don-cha" culture in the world that survived on the southwestern shore of Korea. To restore Chungtaejeon and to make the tea with consistent quality, the microorganisms involved in traditional type fermentation of Chungtaejeon were isolated, and the tea was prepared with high fermentation ability starters. The sensuous characteristics of Chungtaejeon were also examined. Only Bacilli were found in 3 and 5 year aged Chungtaejeon samples. The Lactobacilli were isolated from properly fermented kimchi and one of them showed high growth capability in media containing green tea extract and also showed strong antagonistic activity against methicillin-resistant Staphylococcus aureus, S. aureus, Salmonella, and E. coli. It was identified and named Lactobacillus plantarum CHO25. Chungtaejeon was fermented with a single starter of L. plantarum CHO25 and with a mixed starter (L. plantarum CHO25, Saccharomyces cerevisiae and Bacillus amyloliquefaciens CHO104). The single fermented sample had the highest cell growth after 5 days of inoculation and the level decreased slowly thereafter. The mixed fermented sample showed strong growth of S. cerevisiae. The highest hunter values were the a value of the single fermented sample and the b value of the mixed sample. The single fermented tea showed the best incense score.

Effect of Plant (Salvia sp.) Growth Using Mixed Microorganisms (혼합 미생물이 식물(Salvia)의 생장에 미치는 영향)

  • Choi, Kyung-Min;Park, Eung-Roh;Ju, Hong-Shin;Yang, Jae-Kyung;Suh, Jeung-Keun;Lee, Sung-Taik;Park, Chang-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 1996
  • Effect of effective microorganisms on the growth of plant (salvia sp.) was investigated. Microorganisms used were photosynthetic bacteria, lactic acid bacteria and yeasts. When photosynthetic bacteria were inoculated to soil by 100 dilution, treated plants showed 160% growth by length compared to control. When photosynthetic bacteria, lactic acid bacteria and yeasts were mixed, diluted by 10 and inoculated to soil, the plants showed 212% growth compared to control. Microbial populations were increased in the treated soil.

  • PDF

Antagonistic inhibitory effects of probiotics against pathogenic microorganisms in vitro (Probiotics의 병원성미생물에 대한 길항적 억제효과)

  • Yuk, Young Sam;Lee, Young ki;Kim, Ga-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.110-116
    • /
    • 2019
  • To investigate the antagonistic inhibitory effects in a mixed culture between probiotics and various pathogenic microorganisms, 140 probiotics were identified using a 16 rRNA sequencing phylogenetic analysis method, and various probiotics strains were isolated from Korean kimchi from January to December 2016. The antagonistic inhibition test of a mixed culture of four probiotics (Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus reuteri) with excellent antimicrobial activity and six pathogenic microorganisms (Candida albicans, Salmonella Enteritidis, E. coli O157:H7, Shigella flexneri, Staphylococcus aureus, and Pseudomonas aeruginosa)showed that the growth of most probiotics strains increased normally after culture, but growth was inhibited almost completely in most pathogenic microorganisms, except for S. Enteritidis. This antagonistic inhibitory effect in vitro was attributed to the low pH of the lactic acid and organic acid produced during fermentation. As a result, four probiotics strains isolated from Korean Kimchi are very likely to be developed as therapeutic agents for female yeast infections and colon and skin care. In the future, these therapeutic agents will help improve public health related to probiotics.

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater (생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구)

  • KIM, SANG KYU;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.

On the Extension of Insecticidal Activity and the Preparation of New Mixture with Diazinon (농약의 약효증진을 위한 첨가제 효과에 관하여;Diazinon제를 중심으로)

  • Cho, Jeong-Rye;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.105-115
    • /
    • 1996
  • In this paper, we reviewed the degradation factors of diazinon which was known to be easily degraded by soil microorganisms and lost of its activity. Under submerged soil condition, the contribution of microorganisms to diazinon degradation was about 40% and these microorganisms preferred soil humus as substrates to diazinon itself. The effect of monooxygenase activity in submerged soil was more important than esterase activity on diazinon degradation and these enzymes were inhibited by several chemicals such as piperonyl butoxide(PBO), EPN and tricyclazole. From these results, new formulation type of diazinon (PBO and triphenyl phosphate were added to commercial diazinon formulation by 0.1% respectively.) and diazinon mixture formulation (diazinon was mixed with EPN, tricyclazole and carbofuran in equal amount) were prepared. The new formulation type of diazinon showed better insecticidal activity by 12% and more delayed diazinon degradation in ten days than commercial diazinon.

  • PDF

Upflow Velocity Effects on Behavior of Reaction Products in USAB Reactor (UASB 반응조에서 상향유속에 따른 높이별 반응생성물의 거동특성)

  • 이헌모;윤종호;정용현
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.14-25
    • /
    • 1998
  • To investigate the behavior of reaction products with the reactor heights by the change of upflow velocity, a typical real height USAB reactor was built and experiment was conducted. The flow in the reactor by the upflow velocity was flug flow at low upflow velocity but the flow was completely mixed flow at high upflow velocity. Therefore, the concentration of pH, alkalinity and volatile acid was not so different with reactor heights at high upflow velocity. And comparing with low upflow velocity, the distribution of microorganisms with reactor heights did not show big different at high upflow velocity. The removal efficiency of organic compounds depended on the distribution of microorganisms and it was low at high upflow velocity. It is concluded that the operation of reactor with proper upflow velocity to improve contact with organic compounds and microorganisms is recommended.

  • PDF

A Study on Anaerobic Biodegradation of MTBE and BTEX by Indigenous Microorganisms (토착 미생물을 이용한 MTBE와 BTEX의 혐기성 생분해 연구)

  • Chung, Woo-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.88-94
    • /
    • 2016
  • The simultaneous biodegradation between MTBE (Gasoline additives) and BTEX (Benzene, Toluene, Ethyl-benzene, o-Xylene, m-Xylene, p-Xylene) was achieved within a competitive inter-relationship, with not only electron accepters such as nitrate, sulfate, and iron(III) without oxygen, but also with electron donors such as MTBE and BTEX. Preexisting indigenous microorganisms from a domestic sample of gasoline contaminated soil was used for a lab-scale batch test. The result of the test showed that the biodegradation rate of MTBE decreased when there was co-existing MTBE and BTEX, compared to having just MTBE present. The growth of indigenous microorganisms was not affected in the case of the MTBE treatment, whereas the growth of the microorganisms was decreased in combined MTBE and BTEX sample. This may indicate that an inhibitor related to biodegradation when BTEX and MTBE are mixed will be found. This inhibitor may be found to retard the anaerobic conditions needed for efficient breakdown of these complex carbon chain molecules in-situ. Moreover, it is also possible that an unknown competitive reaction is being imposed on the interactions between MTBE and BTEX dependent on conditions, ratios of mixture, etc.