• Title/Summary/Keyword: mixed lubrication

Search Result 99, Processing Time 0.019 seconds

Study of Lubrication and Oxidation Stability as Mixture Ratio of FAMEs in Lubricating Base Oil (윤활기유 내 지방산메틸에스테르 혼합비율에 따른 윤활특성 및 산화안정성 연구)

  • Kim, Shin;Yim, Eui-Soon;Jung, Choong-Sub;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.715-725
    • /
    • 2013
  • FAMEs produced from vegetable oil via transesterification reaction were known as alternative fuels. Lubrication and Wear properties of FAMEs were investigated to confirm the alternative possibility as lubricating base oil. In this study, lubrication properties and physical characteristics of mixture oils were examined using blended FAMEs(soybean, palm, waste oils) in two kinds of lubricating base oils. The oxidation stability of mixed samples were analyzed using ASTM D 2272 method and investigated for oxidation states of mixture oils after the shell four ball test. The results showed that the increase of FAMEs contents improved lubrication due to the intrinsic characteristics, however, increased the contents of oxidation which deteriorate the lubrication, and we found optimum mixture ratio as results of each base biodiesel (FAME).

Effect of Ti Coated Diamond Grit on Performance of Diamond Tool (티타늄 코팅 된 다이아몬드 지립이 다이아몬드 공구의 성능에 미치는 영향)

  • 임동필;임대순;민언기;임종관
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.242-246
    • /
    • 1997
  • Diamond grit was coated with Ti by RF Sputtering to investigate the effect of coated diamond particles on performance of diamond impregnated saw. Coated and uncoated powders were separately mixed with 70Co-30W(wt %) powders by conventional milling technique. Hot pressing was carried out to make specimens. The wear test were carried out with these two types of diamond impregnated specimens. It was demonstrated that Ti coating was effective in improving the ability of grit retention and thus enhanced the tribological performance of diamond tool.

  • PDF

An Experimental Study on Frictional Characteristics of the Piston Ring (피스톤 링 마찰 특성의 실험적 연구)

  • Lee, Jae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.115-122
    • /
    • 1999
  • A friction tester to measure friction force generated at the interface between the piston ring and the cylinder liner was developed. Modified piston ring is bar-shaped and 100mm long. Surface of the modified piston ring is machined by the profile grinding machine to be formed as a shape of an arc of a circle. Measured data are treated as mean effective friction force and power loss. From this test it can be confirmed that friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is decreased and power loss is increased with increasing velocity. And it is known that region of mixed lubrication is broader than estimated with theoretical analysis. it is expected that this tester can be used as the optimization tool of the surface shape of the piston ring at the first stage of development of the piston rings.

  • PDF

A Study on Process Improvement of Combined Extrusion with Aluminum Alloy 7075 (유한요소 시뮬레이션을 이용한 알루미늄 7075 복합 압출재에 대한 공정개선 연구)

  • 김진복;이지억;강범수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.197-205
    • /
    • 1996
  • A combined extrusion process studied here consists of forward and backward extrusion, and it is formed in single operation. The metal flow involved in the operation has appeared to be difficult to analyze accurately because of mixed directions of the flow. In this study, conventional two operations of a forward and a backward extrusions is transformed into one operation of mixed extrusion. A process designed by an industry expert is simulated by the rigid-plastic finite element method to investigate the metal flow and defects. In addition to the FEM simulation, experimental analysis has been carried out to confirm the design in industry, which includes material characterization, preliminary expriment, and whole experimental forming operation. The experimental results show that warm forming of extrusion is more desirable than cold working and hot forming in view of grain growth. Also two conditions of lubrication between workpiece and die has been investigated.

  • PDF

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - I. Theory and Analysis Procedure (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 − I. 이론 및 해석 절차)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.109-124
    • /
    • 2015
  • This paper presents a wear analysis procedure for the journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. A journal bearing is in the mixed elastohydrodynamic (EHL) lubrication region when the shaft speed is less than the corresponding lift-off speed. Below the lift-off speed, a wear scar can form on bearing surfaces. In part 1 of this paper, we develop the appropriate formulations and the calculation procedure for the analysis. Specifically, we formulate an equation for modified film thickness in a journal bearing considering the additional wear volume. In order to obtain the modified specific wear rate induced by the modified Archard’s wear coefficient, we utilized the extended non-dimensional diagram for the specific wear rate, k, the fractional film defect coefficient, Ψ and the asperity load sharing factor, γ2. This asperity load sharing factor is newly calculated by setting the Zhao-Maietta-Chang (ZMC) asperity contact pressure equation coupled with the central film thickness equation derived by using the ZMC asperity contact model equal to the modified central contact pressure derived by using the central (or maximum) contact pressure at the dry rough line-contact configuration. We can use the procedure introduced in this paper to determine the lifetime (or longterm) linear wear in radial journal bearings that is a result of repeated stop-start cycles.

Experimental Study on Damage to Journal Bearing due to Contaminating Particles in Lubricant (윤활유 오염입자에 의한 저널 베어링 손상에 관한 실험적 연구)

  • Song, Chang Seok;Lee, Bora;Yu, YongHun;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Recently, there have been reports of severe symptoms of wear in bearings due to foreign substances mixed in lubricants. Therefore, studying the effects of foreign substances (such as combustion products and metallic debris) on the wear characteristics of journal bearings and proposing appropriate management standards for lubricant cleanliness have become necessary. Studies on the effect of particle size and concentration of foreign substances on surface damage have actively progressed in the recent times. These studies indicate the possibility of foreign substances causing direct wear of bearing surfaces. However, experiments conducted until now involve only basic tests such as the Pin-on-Disk test instead of those involving real bearing systems. This study experimentally examines the damage to the surface of a journal bearing due to foreign substances (combustion products and alumina) mixed with the lubricant, as well as the effect of the type and size of particles on its wear characteristics. The study uses an experimental journal bearing similar to a real bearing system for conducting the lubrication test. Hydrodynamic Lubrication (HL) numerical analysis, experiment results, and film parameters are used for calculating the operating conditions required for achieving the desired film thickness, and the results of the analysis are modified for considering the surface roughness. The run-time of the experiment is 10 min including the stabilization process. The experiment results show that alumina particles larger than the minimum film thickness cause significant surface damage.

The Performance Comparison between the Mixture of Each Liquid to be Blended and Multi-grade Engine Oil as a Single Fluid in a High Speed Thermo-hydrodynamic Journal Bearing (고속 열유체 저어널 베어링에서 단일유체로서의 다등급 엔진 오일과 그 첨가액체들의 혼합물에 대한 성능 비교)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.81-92
    • /
    • 2012
  • To product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive liquid package and a polymer liquid as viscosity index improver in order to improve the lubricating property of oil. That is, engine oil is the mixture of more than two fluids. In this paper, it will be systematically organized the governing equation describing non-Newtonian thermo-hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics. Then, in order to find how the thermal analysis effect on the bearing performance lubricated with the mixture of multi-fluids, it will be compared to the performances between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed journal bearing. It is found that, in the case of lower viscosity oil, the difference of pressure distribution between the above two cases turns out to be existed, even if the load capacity is same level.

Detecting of Scuffing Faliure using Acoustic Emission (AE센서를 이용한 스커핑 손상의 감시)

  • Kim, Jae-Hwan;Kim, Tae-Wan;Cho, Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.34-39
    • /
    • 2002
  • The surfaces of machine components in sliding contact such as bearing, gears and pistons etc. frequently operate under the condition of mixed lubrication due to high load, high speed and slip. These machine components often undergo the inception of scuffing in practical application. The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. However, it is difficult to find a universal mechanism to explain all scuffing phenomena because there are so many factors affecting the onset of scuffing. In this study, scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Acoustic Emission(AE) signal has been widely utilized to monitor the interaction at the friction interface. Using AE signals we can get an indication about the state of the friction processes, about the quality of solid and liquid layers eon the contacting surfaces in real time. The FFT(Fast Fourier Transform)analyses of the AE signal are used to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented

  • PDF

Design Effect of Sealing Characteristics of Non-Contact Type Seal for High Speed Spindle (형상설계에 관한 고속주축용 비접촉 시일의 밀봉특성 연구)

  • 나병철;전경진;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.610-614
    • /
    • 1996
  • Sealing of lubricat-air mixture in the high performance machining conte is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry, Velocity, pressure, turbulence intensity of profile is calculated to fina more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic, This paper arranges a geometry of mostly used non-contact type seal and analyzes leakage characteristics to minimize a leakage on the same sealing area.

  • PDF

Engine Friction Reduction Through Liner Rotation (회전 라이너를 이용한 엔진 마찰저감)

  • Joo Shinhyuk;Kim Myungjin;Matthews Ronald D.;Chun Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Cylinder liner rotation is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of cylinder liner rotation is to reduce the occurrence of boundary and mixed lubrication friction in the piston assembly. This paper reports the results of experiments to quantify the potential of the rotating liner engine. A GM Quad-4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, tear-down tests were used to measure the contribution of each engine component to the total friction torque. The cycle-averaged motoring torque of the RLE represents a $23\~31\%$ friction reduction compared to the baseline engine for hot motoring tests. Through tear down tests, it was found that the piston assembly friction of the baseline engine is reduced from $90\%$ at 1200 rpm to $71\%$ at 2000 rpm through liner rotation.