• Title/Summary/Keyword: mixed forest

Search Result 653, Processing Time 0.024 seconds

Ecological Attributes by Forest Types in the Natural Forest of Mt. Odae

  • Choi, Yeong Hwa;Kim, Ji Hong;Chung, Sang Hoon
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.66-73
    • /
    • 2017
  • This study was conducted to evaluate the ecological attributes of forest types which were classified by cluster analysis in the natural forest of Mt. Odae on the basis of the vegetation data (232 sampling points) from the point-quarter sampling methods. For the classified types, the species composition was expressed by importance value to describe the stand structure and the species diversity was quantified using the Shannon's diversity index. Recognized forest types were 1) Quercus mongolica-Pinus densiflora-Betula ermanii forest type, 2) Mixed mesophytic forest type, 3) Q. mongolica forest type, 4) B. ermanii forest type. Species diversity indices of total and overstory were highest in the Mixed mesophytic forest type (3.465 and 2.942), and lowest in the B. ermanii forest type (0.118 and 0.832). In addition to that, Q. mongolica-P. densiflora-B. ermanii forest type was calculated as 3.226 and 2.565, and Q. mongolica forest type was calculated as 2.776 and 1.218 in total and overstory, respectively. It was considered that after the P. densiflora and B. ermanii first invaded and site condition became good, Q. mongolica-P. densiflora-B. ermanii forest type was dominated by Q. mongolica. Mixed mesophytic forest type showed the most stable stand structure with various species distributed uniformly. Q. mongolica forest type would preserve the present stand status for a while, and the B. ermanii in B. ermanii forest type would be pressed by other species over time.

Estimation of the Amount of Round Wood in Unused Forest Biomass Reporting in Forest Clearing (미이용 산림바이오매스 공급에 있어 수확벌채의 원목 혼입량 추정)

  • Jiyoon, Yang;Jaejung, Lee;Hanseob, Jeong;Sang Hun, Han;Soo Min, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.70-78
    • /
    • 2022
  • To respond to global warming, there is an increasing interest in eco-friendly alternative energy sources. Therefore, unused forest biomass that has been neglected due to a lack of marketability is attracting attention. With the introduction of the "unused forest biomass certification system" in 2019, ways of determining quantity of unused forest biomass have steadily increased. However, there have been reported cases whereby unused forest biomass weighed more than the amount of harvested trees. It was found that it was possible that forest resources that can be used as round wood were mixed with unused forest biomass. In this context, this study aimed to estimate the amount of mixed round wood in the unused forest biomass supply. The relative expression of growing stock/ha versus the amount of final clearing/ha collected was modeled (y=1.490x-94.341, R2=0.861). As a result, it was found that round wood was mixed into the unused forest biomass, contributing to the disparity observed between the weighted forest biomass and the amount of trees harvested. In conclusion, proper declaration and certification procedures should be carried out for the use of forest resources and promoting unused forest biomass usage.

Effect of Growth and Nitrogen Use Efficiency by Application of Mixed Silicate and Nitrogen Fertilizer on Zoysiagrass Cultivation (한국잔디 재배에 규산질 비료 시비가 생육과 질소이용효율에 미치는 영향)

  • Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Bae, Eun-Ji
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.137-142
    • /
    • 2014
  • This study was conducted to investigate the effect of silicate mixed with nitrogen fertilizer on improving the growth and reducing nitrogen input of zoysiagrass. Plant height, fresh and dry weight of shoots, roots, and stolons, the number of shoots and total of stolons length were increased with highest in silicate mixed with nitrogen 24 kg/10a than nitrogen 24 kg/10a, and it showed no significance in silicate mixed with nitrogen 18 kg/10a. Nitrogen use efficiency in mixed silicate fertilizer was increased by 25-30% than single nitrogen fertilization. Moreover, the contents of available $SiO_2$, and organic matters of silicate fertilization on soil was higher than not silicate fertilization on soil. The silicate enhanced the growth and density of zoysiagrass, while it was a crucial factor to affect the chemical property of the soil.

Change in Community Composition and Soil Carbon Stock Along Transitional Boundary in a Sub-Tropical Forest of Garhwal Himalaya

  • Kumar, Munesh;Kumar, Manish;Saleem, Sajid;Prasad, Sunil;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.194-199
    • /
    • 2013
  • The aim of the present study was to assess the effect of transitional boundary on community composition and soil carbon stock. Five vegetation types were recognized horizontally along the transitional strip based on the dominance of tree species i.e., Pure Anogeissus latifolia forest (P.AL), mixed Pinus roxburghii and Lannea coromandelica forest (M.PR&LC), pure Pinus roxburghii forest (P.PR), mixed Pinus roxburghii and Lannea coromandelica (M.PR&LC) and pure Anogeissus latifolia forest (P.AL). The results revealed that Anogeissus latifolia was reported dominant tree in the outer transitional boundaries of the forest, which reduced dominance of trees towards middle where Pinus roxburghii was found dominant. The soil carbon stock was reported higher in the Anogeissus latifolia dominant forest and reduced with the dominance of Pinus roxburghii in the middle site. Both the species are growing close to one another and competing for survival, but the aggressive nature of Anogeissus latifolia particular in this region may change new growth of Pinus roxburghii and will enhance soil carbon stock. But high anthropogenic pressure on Anogeissus latifolia tree species could be limited chance to further its flourish.

Evaluation of Adhesive Characteristics of Mixed Cross Laminated Timber (CLT) Using Yellow Popular and Softwood Structural Lumbers

  • Keon-Ho KIM;Hyun-Mi LEE;Min LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • To evaluate the adhesive characteristics of mixed cross-laminated timber (CLT) using domestic softwoods structural lumber proposed by KS F 3020 and yellow poplar, penetration depth of adhesive and thickness of bonding line were analyzed based on the results of boiling water soaking delamination. 3 Types of adhesives and 2 types of major layer were divided into a 5 ply CLT using yellow popular as minor layer. The bonding performance of the mixed CLT as structural members was evaluated based on the KS F 2081. The thickness of bonding line between layers of the mixed CLT was measured with a scanning electron microscope, and the adhesive penetration depth in the layer members was measured with an optical microscope. As a result of boiling water soaking delamination test of mixed CLT, the CLT specimens using PRF and PUR adhesives met the requirements of KS F 2081. It was verified that the penetration path of the adhesive in the layes was mainly through the tracheid cell in the case of Japanese larch and Korean red pine layers, and through the vessel and radial tissue in yellow popular layers. The penetration depth of the adhesive was the highest for the PRF adhesive under the same pressing time conditions, and the thickness of the bonding line was in inverse proportion to the penetration depth in the case of the PUR adhesive.

Unsupervised Classification of Forest Vegetation in the Mt. Wolak Experimental Forest Using Landsat Thematic Mapper Data (Landsat Thematic Mapper 화상자료를 이용한 월악산 지역 산림식생의 무감독분류)

  • Lee, Sang Hee;Park, Jae Hyeon;Lee, Joon Woo;Kim, Je Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.36-44
    • /
    • 2001
  • The main purpose of this study was to classify forest vegetation effectively using Landsat Thematic Mapper data(June, 1994) in mountainous region. The research area was the Mt. Wolak Experimental Forest of Chungbuk National University, near Chungju and Jecheon city, Chungcheongbuk-do. To classify forest vegetation effectively, Normalized Difference Vegetation Index(NDVI) was used to reduce topographic effects. This NDVI was modified and transformed to the value of 0 to 255, and then the modified values were combined with other Landsat Thematic Mapper bands. To classify forest and land cover types, unsupervised classification method was used. The results of this study are summarized as follows. 1. Combinations of band "3, 5, NDVI" in Landsat Thematic Mapper data showed a good separation with high accuracy. The expected classification accuracy was 95.1% in Landsat Thematic Mapper data. 2. The Land Cover types were classified into six groups : coniferous forest, deciduous forest, mixed forest, paddy and grass, non-forest, and other undetectable areas. As these classified results were compared with the reconnaissance survey and aerial black and white infrared photographs, the overall classification accuracy was 76.5% in Landsat Thematic Mapper data. 3. The portion of non-forest in Mt. Wolak area was 1.9%. The percentages of coniferous, deciduous and mixed forests were 30.9%, 35.7% and 26.4%, respectively. 4. As these classified results were compared with other reference data, the percentages of coniferous, deciduous and mixed forests increased, but the portion of non-forest was exceedingly diminished. These differences are thought to be from the different research method and the different season of received Landsat Thematic Mapper data.

  • PDF

Assessment of the Uptake of Base Cation and Nitrogen in Korean Forest (우리나라 산림에 의한 염기성 양이온과 질소의 흡수량 산정)

  • Lee, Sang-Deok;Han, Jin-Seok;Chung, Il-Rok;Lee, Sang-Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.1
    • /
    • pp.41-50
    • /
    • 2009
  • Using the "Statistical Yearbooks of Korean forestry", we assessed the uptake of nitrogen and base cations by Korean forest. Combined amount of base cations uptake by forest tress during its growth and that of at the time of harvest reached to 1,034 eq/ha/yr. The base cations uptake in the range of 900 ~ 1,100 eq/ha/yr occupied approximately 48.6% out of total. Coniferous forest in the range of 170 ~ 200 eq/ha/yr was 59.9%, deciduous forest in the range of 430 ~ 530 eq/ha/yr was 42.6%, and mixed forest in the range of 270 ~ 370 eq/ha/yr was 35.7% out of total. Deciduous forest recorded higher uptake rate of nitrogen and base cation than coniferous forest in Korea. Combined amounts of nitrogen uptake by forest tress during growth and that at the time of forest, was 1,108 eq/ha/yr and nitrogen uptake was in the range of 1,000 ~ 1,200 eq/ha/yr, Within Korea, forest with nitrogen uptake in the range of 1,000 ~ 1,200 eq/ha/yr account for 45.7% of the entire country. Locations in the range of 320 ~ 390 eq/ha/yr occupied 43.9% of all coniferous forest while deciduous forest in the range of 470 ~ 570 eq/ha/yr was 40.4% of total deciduous forest. As for mixed forest in the range of 270 ~ 370 eq/ha/yr, it occupied 35.9% of all mixed forest of Korea.

Effect of Soil Properties and Soil Bacterial Community on Early Growth Characteristics of Wild-simulated Ginseng (Panax ginseng C. A. Meyer) in Coniferous and Mixed Forest (침엽수림과 혼효림에서 토양특성과 토양세균 군집이 산양삼 초기 생육특성에 미치는 영향)

  • Kim, Ki Yoon;Kim, Hyun Jun;Um, Yurry;Jeon, Kwon Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.3
    • /
    • pp.183-194
    • /
    • 2020
  • Background: This study investigated the effect of soil properties and soil bacterial community on early growth characteristics of wild-simulated ginseng (Panax ginseng C. A. Meyer) in coniferous and mixed forest experimental fields. Methods and Results: The soil bacterial community was analyzed using a high throughput sequencing technique (Illumina MiSeq sequencing). The relationship between the soil bacterial community, soil properties, and growth characteristics of wild-simulated ginseng were analyzed using principal coordinate analysis (PCoA) and the Pearson's correlation analysis. Soil properties and soil bacterial community showed significant difference with forest physiognomy. Results of Pearson's correlation analysis and PCoA showed that the soil properties (soil pH, organic matter, total nitrogen, and cation exchange capacity) and soil bacterial community had significant correlation with tree species ratio and early growth characteristics of wild-simulated ginseng. Conclusions: This study clearly demonstrated the effect of soil properties and soil bacterial community on early growth characteristics of wild-simulated ginseng in coniferous and mixed forest. Moreover, these results will help in the selection of suitable cultivation sites for wild-simulated ginseng.

Detection of Site Environment and Estimation of Stand Yield in Mixed Forests Using National Forest Inventory (국가산림자원조사를 이용한 혼효림의 입지환경 탐색 및 임분수확량 추정)

  • Seongyeop Jeong;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyokeun Park;JungBin Lee;Kyujin Yeom;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • This study was established to investigate the site environment of mixed forests in Korea and to estimate the growth and yield of stands using national forest resources inventory data. The growth of mixed forests was derived by applying the Chapman-Richards model with diameter at breast height (DBH), height, and cross-sectional area at breast height (BA), and the yield of mixed forests was derived by applying stepwise regression analysis with factors such as cross-sectional area at breast height, site index (SI), age, and standing tree density per ha. Mixed forests were found to be growing in various locations. By climate zone, more than half of them were distributed in the temperate central region. By altitude, about 62% were distributed at 101-400 m. The fitness indexes (FI) for the growth model of mixed forests, which is the independent variable of stand age, were 0.32 for the DBH estimation, 0.22 for the height estimation, and 0.18 for the basal area at breast height estimation, which were somewhat low. However, considering the graph and residual between the estimated and measured values of the estimation equation, the use of this estimation model is not expected to cause any particular problems. The yield prediction model of mixed forests was derived as follows: Stand volume =-162.6859+6.3434 ∙ BA+9.9214 ∙ SI+0.7271 ∙ Age, which is a step- by-step input of basal area at breast height (BA), site index (SI), and age among several growth factors, and the determination coefficient (R2) of the equation was about 96%. Using our optimal growth and yield prediction model, a makeshift stand yield table was created. This table of mixed forests was also used to derive the rotation of the highest production in volume.

A Study on the Forest Classification for Ecosystem Services Valuation - Focused on Forest Type Map and Landcover Map - (생태계 서비스 가치평가를 위한 산림 유형 분류 방안 - 임상도와 토지피복지도 활용을 중심으로 -)

  • Jeon, Seong Woo;Kim, Jaeuk;Jung, Huicheul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.31-39
    • /
    • 2013
  • Some researcher started studies of natural capital from 1980's. But many researches are going along with the theme lately. Most assessment of ecosystem services are approaching a general assessment using a land-cover map. Therefore they have some problems such as overestimate, underestimate, and double counting, and so on. This study suggested a detailed typology for quantitative assessment about ecosystem services. It compared land-cover map and forest type map to select a based map and made criteria with reference to the literature and field survey. It subdivided a forest typology using ecological feature (natural forest, artifical forest), forest type (coniferous forest, mixed forest, hardwood forest) and age of stand in forest type map. Each forest type is widely distributed 21~40 ages of forests and biggest area is 21~40 ages of mixed forest in all forest typology. Further researches have to progress consistently assessment using detailed typology and function of forest ecosystem services.