• 제목/요약/키워드: mitogenic activity

검색결과 99건 처리시간 0.025초

배양중인 흰쥐 뇌하수체 전엽 세포의 증식에 미치는 Growth Hormone Releasing Hormone (GHRH)의 영향 (Effect of Growth Hormone Releasing Hormone on the Proliferation of Cultured Cells Derived from Rat Anterior Pituitary Gland)

  • Lee, Sung-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권2호
    • /
    • pp.237-242
    • /
    • 2000
  • 흰쥐 시상하부에서 합성ㆍ분비되어 뇌하수체 전엽에서의 growth hormone (GH) 분비를 촉진하는 growth hormone releasing hormone (GHRH)이 시상하부 이외 조직들 (extrahypothalamic tissues)인 태반, 생식소, 그리고 뇌하수체 전엽에서도 발현됨이 보고되었다. 본 연구는 흰쥐 뇌하수체 전엽에서 발현되는 GHRH의 기능을 조사하기 위해 i)세포 배양을 시행하면서 GHRH의 세포내 함량, 분비 그리고 세포분획법 (cell-fractionation)을 사용하여 분리한 뇌하수체 세포 유형별로 GHRH 함량을 방사면역측정법으로 조사하였고, ii)체외배양 중인 뇌하수체 전엽세포의 증식에 미치는 GHRH의 효과를 측정하기 위해 [$^3$H] thymidine incorporation assay를, 그리고 iii) GHRH의 세포분열 촉진 효과와 세포내 c-fos 유전자 발현과의 상관관계를 조사하기 위해 northern blot analysis를 시행하였다. GHRH 방사면역측정법을 시행한 결과 상당량의 GHRH-like 분자들이 흰쥐 뇌하수체 전엽내에 존재하고, 체외 세포배양시 분비됨을 관찰하였다. 세포분획을 사용한 실험에서 GHRH 함량은 gonadotrope, somatotrope, lactotrope 그리고 thyrotrope 순으로 나타났다. 이 러한 결과는 흰쥐 뇌하수체 전엽에서 생성된 GHRH가 국부적인 조절인자, 특히 상이한 유형의 세포들 간의 상호조절 (cross-talk)을 통해 뇌하수체 전엽에서의 세포분열과 분화, 그리고 기능조절에 관여할 가능성을 보여주었다. GHRH는 체외 배양중인 뇌하수체 전엽세포의 [$^3$H] thymidine incorporation을 농도의존적으로 증가시켰으며, 이러한 GHRH의 세포분열 촉진 효과는 예상대로 세포내 oncogene 활성 의 증가를 통해 일어나는 것임을 c-fos northrn blot으로 확인하였다. 결론적으로, 본 연구는 흰쥐 뇌하수체 전엽에서 합성되는 GHRH가 paracrine 또는 autocrine 기작으로 GH의 분비 촉진 이외에도 세포분열의 조절함을 시사하는 것이다.

  • PDF

Apoptosis-inducing effect and structural basis of Polygonatum cyrtonema lectin and chemical modification properties on its mannose-binding sites

  • Liu, Bo;Xu, Xiao-Chao;Cheng, Yan;Huang, Jian;Liu, Yan-Hong;Liu, Zhen;Min, Ming-Wei;Bian, He-Jiao;Che, Jing;Bao, Jin-Ku
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.369-375
    • /
    • 2008
  • Polygonatum cyrtonema Lectin (PCL), which is classified as a monocot mannose-binding lectin, has received great regards for its uniquely biological activities and potentially medical applications in cancer cells. This paper was initially aimed to study apoptosis of PCL on Hela cells. Thus, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method was carried out. Through observation of cell morphologic changes and Lactate dehydrogenase (LDH) activity-based cytotoxicity assays, PCL induced HeLa cell apoptosis in a dose-dependent manner. To further gain structural basis, multiple alignments, homology modeling and docking experiments were performed to analyze the correlation between its biological activities and mannose-binding sites. Eventually, considering docking data, chemical modification properties on the three mannose-binding sites were analyzed by a series of biological experiments (e.g., hemagglutinating and mitogenic activity assays, fluorescence and Circular Dichrosim (CD) spectroscopy) to profoundly identify the role of some key amino acids in the structure-function relationship of PCL.

PKA-Mediated Stabilization of FoxH1 Negatively Regulates ERα Activity

  • Yum, Jinah;Jeong, Hyung Min;Kim, Seulki;Seo, Jin Won;Han, Younho;Lee, Kwang-Youl;Yeo, Chang-Yeol
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.67-71
    • /
    • 2009
  • Estrogen receptor ${\alpha}$ ($ER{\alpha}$) mediates the mitogenic effects of estrogen. $ER{\alpha}$ signaling regulates the normal growth and differentiation of mammary tissue, but uncontrolled $ER{\alpha}$ activation increases the risk to breast cancer. Estrogen binding induces ligand-dependent $ER{\alpha}$ activation, thereby facilitating $ER{\alpha}$ dimerization, promoter binding and coactivator recruitment. $ER{\alpha}$ can also be activated in a ligand-independent manner by many signaling pathways, including protein kinase A (PKA) signaling. However, in several $ER{\alpha}$-positive breast cancer cells, PKA inhibits estrogen-dependent cell growth. FoxH1 represses the transcriptional activities of estrogen receptors and androgen receptors (AR). Interestingly, FoxH1 has been found to inhibit the PKA-induced and ligand-induced activation of AR. In the present study, we examined the effects of PKA activation on the ability of FoxH1 to represses $ER{\alpha}$ transcriptional activity. We found that PKA increases the protein stability of FoxH1, and that FoxH1 inhibits PKA-induced and estradiol-induced activation of an estrogen response element (ERE). Furthermore, in MCF7 cells, FoxH1 knockdown increased the PKA-induced and estradiol-induced activation of the ERE. These results suggest that PKA can negatively regulate $ER{\alpha}$, at least in part, through FoxH1.

Immunosuppressive Effect of Prodigiosin on Murine Splenocyte and Macrophages

  • Huh, Jung-Eun;Koo, Hyun-Jung;Kim, Kyung-Ho;Yim, Joung-Han;Lee, Hong-Kum;Sohn, Eun-Wha;Pyo, Suhk-Neung
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.351-355
    • /
    • 2008
  • Prodigiosin was isolated from marine bacteria Hahella chejuensis which has been recently discovered from Marado, Cheju Island, Republic of Korea. Immunosuppressive properties have been reported for prodigiosin members such as undecylprodigiosin, metacycloprodigiosin, prodigiosin, and its synthetic analogue PNU156804 (PNU). However, the effect of this agent on the function of macrophage and splenocyte has not been characterized in detail. In the present study, we examined the effects of prodigiosin for its ability to alter the function of murine macrophage and NK cell, and the proliferation of splenocytes. When thioglycollate-elicited macrophages pre-exposed to prodigiosin (1-50 ng/ml) were stimulated with LPS/IFN-$\gamma$, pretreatment with prodigiosin resulted in the inhibition of tumoricidal activity of macrophage in a concentration-dependent manner. Tumoricidal activity of NK cell was also inhibited by prodigiosin. Moreover, we found that prodigiosin was able to cause a dose-dependent inhibition of murine lymphocyte responsiveness to Con A and LPS although T-mitogenic response was the more sensitive one. Taken together, the present results point out that prodigiosin has a suppressive effect on the mitogen-induced proliferation of murine lymphocytes and the function of macrophage and NK cell.

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

C형 간염바이러스의 core 단백질에 의해 암화된 쥐의 섬유아세포에서 phospholipase D 효소활성의 증가 (Phospholipase D Activity is Elevated in Hepatitis C Virus Core Protein-Transformed NIH 3T3 Mouse Fibroblast Cells)

  • Kim, Joonmo;Jung, Eun-Young;Jang, Kyung-Lib;Min, Do-Sik
    • 생명과학회지
    • /
    • 제13권5호
    • /
    • pp.551-558
    • /
    • 2003
  • C형 간염바이러스는 간암을 야기하는 심각한 바이러스이다. C형 간염바이러스의 core 단백질의 과발현은 섬유아세포를 암화시키는 것으로 알려져 있다. Phospholipase D (PLD)의 효소활성이 세포증식 신호전달에 의해 활성화되어 있으며, 사람의 암조직에서 과발현 및 활성이 증가되어 있는 것으로 알려져 있다. 본 연구의 목적은, core 단백질에 의해 암화된 세포에서 PLD가 어떻게 조절되는지를 이해하고자 하는 것이다. 자극이 없는 상태에서뿐만 아니라 PMA에 의해 유도되는 PLD효소활성은, 암화된 세포에서 더 증가하였으며, control 세포와 core 단백질에 의해 암화된 세포에서 PLD와 PKC 단백질의 발현은 서로 유사하였다. PKC 특이적인 억제제와 PKC의 세포막으로의 이동에 관한 실험을 통해서, PKC-d가 암화된 세포에서 PMA에 의해 유도되는 PLD활성의 증가에 중요하게 관여하고 있음을 밝혔다. 이러한 결과는, PLD가 core 단백질에 의해 유도되는 세포의 암화과정에 관여하고 있을 것으로 추정된다.

갈근탕(葛根湯)이 면역조절작용에 미치는 영향 (Effect of Gal-Geun-Tang on Antigen-Specific Immune Response)

  • 조대연;윤용갑;정명;이은혜;복영옥;정창옥;임규상
    • 한방안이비인후피부과학회지
    • /
    • 제29권3호
    • /
    • pp.134-149
    • /
    • 2016
  • Objectives : Gal-Geun-Tang (GT) has been described from SANGHAN in Korean traditional medicine and known to act against cold, fever, hypertension, and nasal catarrh. However, little has yet been learned about the effect of GT on immune function. In the current study, in vitro and in vivo immunomodulatory activity of GT (water extract) was investigated.Methods : Water extract of GT induced in vitro proliferation of spleen cells and significantly increased their proliferative responses during anti-CD3 activation. Using purified splenic T and B cells, it was revealed that GT has a mitogenic activity to B cells and promotes their proliferation induced by lipopolysaccharide, whereas T cell proliferation was not triggered and GT was rather inhibitory to T cell activation caused by anti-CD3 antibody. In the presence of antigen presenting cells (APC), GT addition resulted in a significant increase of IFNγ and IL-4, but not IL-2, production. However, addition of high concentration (1,000㎍/㎖) of GT led to a marked reduction in T cell cytokine production and under such condition, GT facilitated apoptosis of T cells when examined by flow cytometry with propidium iodide staining.Results : In vivo immunomdulation of GT was also investigated using a mouse model. Following keyhole limpet hemocyanin (KLH) immunization, GT (1 ㎎/day) was orally administered for 9 days. Cell numbers in thymus, spleen and peripheral blood were not altered by GT administration, indicating that such dose is not immunotoxic. Cell numbers in draining lymph nodes (LN) and ex vivo Ag-specific proliferation of LN cells were significantly elevated by GT administration. However, any preferential stimulation of T or B and CD4+ or CD8+ T cell subpopulations was not observed in a flow cytometric analysis of LN cells. This result shows that GT does not promote in vivo B cell proliferation while GT enhances Ag-specific proliferation of LN cells, unlike what was observed in vitro.Conclusions : For a further understanding of in vivo immunomodulatory activity of GT, ex vivo cytokine production of LN cells obtained from KLH-immunized mice was evaluated. Ag-specific IFNγ production was significantly higher in GT-treated mice when compared to PBS-treated control mice. In contrast, IL-4 production in GT-treated group was comparable to control group unlike to in vitro data. In addition, GT administration did not result in any significant differences in serum levels of Ig (IgM, IgG1 and IgG2a) between GT-treated and control groups. Taken together, these data strongly support that GT promotes immune response, more profoundly type 1 helper T cell (Th1) activity and GT may be applicable for treatment of intracellular parasite infection such as viral diseases.

Binding Specificity of Philyra pisum Lectin to Pathogen-Associated Molecular Patterns, and Its Secondary Structure

  • Park, Byung Tae;Kim, Byung Sun;Park, Heajin;Jeong, Jaehoon;Hyun, Hanbit;Hwang, Hye Seong;Kim, Ha Hyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.547-551
    • /
    • 2013
  • We recently reported a Philyra pisum lectin (PPL) that exerts mitogenic effects on human lymphocytes, and its molecular characterization. The present study provides a more detailed characterization of PPL based on the results from a monosaccharide analysis indicating that PPL is a glycoprotein, and circular dichroism spectra revealing its estimated ${\alpha}$-helix, ${\beta}$-sheet, ${\beta}$-turn, and random coil contents to be 14.0%, 39.6%, 15.8%, and 30.6%, respectively. These contents are quite similar to those of deglycosylated PPL, indicating that glycans do not affect its intact structure. The binding properties to different pathogen-associated molecular patterns were investigated with hemagglutination inhibition assays using lipoteichoic acid from Gram-positive bacteria, lipopolysaccharide from Gram-negative bacteria, and both mannan and ${\beta}$-1,3-glucan from fungi. PPL binds to lipoteichoic acids and mannan, but not to lipopolysaccharides or ${\beta}$-1,3-glucan. PPL exerted no significant antiproliferative effects against human breast or bladder cancer cells. These results indicate that PPL is a glycoprotein with a lipoteichoic acid or mannan-binding specificity and which contains low and high proportions of ${\alpha}$-helix and ${\beta}$-structures, respectively. These properties are inherent to the innate immune system of P. pisum and indicate that PPL could be involved in signal transmission into Gram-positive bacteria or fungi.

Oral Administration of Phosphorylated Dextran Regulates Immune Response in Ovalbumin-Immunized Mice

  • Nagasawa, Chiho;Nishimura-Uemura, Junko;Tohno, Masanori;Shimosato, Takeshi;Kawai, Yasushi;Ikegami, Shuji;Oda, Munehiro;Saito, Tadao;Kitazawa, Haruki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권1호
    • /
    • pp.106-115
    • /
    • 2010
  • Phosphorylated dextran (P-Dex) is an acidic polysaccharide that functions as an immune adjuvant. P-Dex is known to regulate immune response by maintaining a balance between Th1 and Th2 cells in vitro, and thus may also be important in the control of allergic reactions. In the current study, we report the optimum conditions required for the efficient phosphorylation of dextran without toxicity. We found that when dextran was heated at 160${^{\circ}C}$ for 24 h in phosphate buffer (pH 5.0), the resulting P-Dex demonstrated the highest phosphorus content (6.8%). We also report that P-Dex enhances mitogenic activity in mouse splenocytes and induces expression of CD69 and CD86 on the surface of B cells and dendritic cells (DC) in vitro. Oral administration of P-Dex to ovalubmin (OVA)-immunized mice was found to reduce antigen-induced cell proliferation and suppress the expression of CD86 on Th2-inducing DC via exogenous OVA stimulation. P-Dex was also found to increase IL-10 expression in the splenocytes of treated mice. These findings suggest that oral administration of P-Dex increases immunological tolerance and improves the specificity of immunological response to specific antigens.