• 제목/요약/키워드: mitochondria potential

검색결과 267건 처리시간 0.031초

생쥐 배아 동결시 액체질소의 분사속도가 해빙후 배아의 발달, 미세섬유, 미토콘드리아 및 세포자연사에 미치는 영향 (Effect of Different Infusion Frequency of Liquid Nitrogen on Actin Filament, Mitochondria, Apoptosis and Development in Mouse 2-Cell Embryo after Freezing and Thawing)

  • 손인표;안학준;계명찬;최규완;민철기;강희규;이호준;권혁찬
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권2호
    • /
    • pp.161-173
    • /
    • 2000
  • 컴퓨터 세포동결기를 이용하여 생쥐 배아를 동결할 때 액체질소 (L$N_2$)의 분사속도가 해빙 후 배아의 미세구조, 기능 및 발달에 미치는 영향을 알아보고자 하였다. 이를 위해 배아는 동결을 하지 않은 대조군 (control) 및 동결군에서 L$N_2$의 분사속도에 따라 고속분사군 (120 infusion/min group 1), 저속분사군 (50 infusion/min; group 2)으로 나누었다. ICR 계열의 생쥐의 2 세포기 배아를 사용하였으며, 동결 및 해빙은 저속동결-급속해빙 방법을 사용하였다. 각 군에 따라 해빙 후 배아의 생존율과 세포질이 양호하고 분절화가 없는 2세포기 배아를 대상으로 포배 발달율 및 할구수를 측정하였다. 공초점 현미경을 이용하여 배아 내에서의 $H_2O$$_2$, 활성 미토콘드리아의 분포, 막전위차 및 actin filament를 측정하였으며, TUNEL 방법을 이용하여 DNA 분절화를 확인하였다. 동결-해빙 후 건강한 2 세포기 배아의 회수율은 group 1 (50.7%)에 비해 group 2 (34.6%)에서 현저히 감소했다 (p<0.05). 포배기 배아의 발생율 (86.7%, 76.7% vs. 44.0%)과 할구수 (79.5$\pm$12.9, 71.6$\pm$8.0 vs. 62.5$\pm$4.7)는 대조군 혹은 group 1에 비해 group 2에서 유의한 차이를 보였다 (p<0.05). H$_2$0$_2$의 상대적 강도는 group 2에서 유의하게 증가하였다 (15.3$\pm$3.0, 16.6$\pm$1.6 vs. 23.4$\pm$1.8, p<0.05). 활성 미토콘드리아의 분포는 정상적인 배아에서는 균등하게 분포하는 반면 배발달이 정지된 배아에서는 원형질막 주위에 몰리고 응집된 양상을 보였다. 그러나 대조군, group 1, group 2에서는 모두 균등하게 분포하여 각 군간에 차이가 없었다. 미토콘드리아의 JC-1 염색 결과는 대조군과 group 1의 경우 590 nm의 파장으로 발산되는 미토콘드리아가 group 2에 비하여 유의하게 증가하였다 (17.2$\pm$3.8, 17.4$\pm$1.3 vs. 13.2$\pm$2.0, p<0.05). 2세포기 배아내 미세섬유 (actin filament)는 대조군 및 group 1의 경우 균일하게 분포하는 반면, group 2에서는 부분적인 결손과 응집현상이 관찰되었다. DNA 분절율 (30.8%, 36.0% vs. 65.6%; p<0.05)은 group 2에서 유의하게 증가하였다. 동결시 액체질소의 분사속도는 해빙 후 배아 발달에 매우 중요한 요인으로 작용하며, L$N_2$의 분사속도의 증가는 동결과 정에서 하강 온도의 미세한 변화를 감소시켜 세포내 골격구조와 미토콘드리아의 상해를 감소시켜 $H_2O$$_2$의 발생과 DNA 분절화를 감소시켜 배아 발생을 호전시키는 것으로 사료된다.

  • PDF

P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis

  • Guan, Liying;Huang, Fang;Li, Zhushi;Han, Bingshe;Jiang, Qian;Ren, Yun;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • 제41권10호
    • /
    • pp.745-750
    • /
    • 2008
  • Selenium, an essential trace element possessing anti-carcinogenic properties, can induce apoptosis in cancer cells. We have previously shown that sodium selenite can induce apoptosis by activating the mitochondrial apoptosis pathway in NB4 cells. However, the detailed mechanism remains unclear. Presently, we demonstrate that p53 contributes to apoptosis by directing signaling at the mitochondria. Immunofluorescent and Western blot procedures revealed selenite-induced p53 translocation to mitochondria. Inhibition of p53 blocked accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential, suggesting that mitochondrial p53 acts as an upstream signal of ROS and activates the mitochondrial apoptosis pathway. Selenite also disrupted cellular calcium ion homeostasis in a ROS-dependent manner and increased mitochondrial calcium ion concentration. p38 kinase mediated phosphorylation and mitochondrial translocation of p53. Taken together, these results indicate that p53 involves selenite-induced NB4 cell apoptosis by translocation to mitochondria and activation mitochondrial apoptosis pathway in a transcription-independent manner.

Hepa1c1c7 세포에서 카드뮴에 의한 세포사멸 신호전달체계에 관한 연구 (Apoptotic Signaling Pathway by Cadmium in Hepalclc7 cells)

  • 오경재;염정호
    • Toxicological Research
    • /
    • 제17권3호
    • /
    • pp.215-223
    • /
    • 2001
  • 카드뮴의 주요한 표적장기이며 카드뮴이 만성 및 급성 폭로시 축적되는 가장 중요한 장기인 간의 세포독성을 Hepalclc7세포에서 caspases및 Bax단백질의 활성과 발현 그리고 미토콘드리아 세포막 전위 변화(MPT) 등을 조사하여 다음과 같은 결과를 얻었다. 1. 카드뮴은 농도의존적으로 간세포인 Hepalclc7 세포의 생존율을 감소시켰다. 2. 카드뮴을 농도별로 처리하였을 때 100 M 이상의 농도에서 세포사멸의 특징중의 하나인 DNA분절현상을 확인하였다. 3. 카드뮴 처리 후 caspase-3, caspase-8, caspase-9 의 활성변화를 조사한 결과 caspase-3,-9 pretease 활성이 시간이 경과함에 따라 증가하였다. 4. 카드뮴 처리 후 cytochrome c가 세포질내로 방출되었고 이는 caspase-9 proteas의 활성화를 유도하였다. 5. 카드뮴 처리 후 Bax가 세포질에서 미토콘드리아로 이동하여 cytochrome c의 세포질내로의 방출에 관여하였다. 6. 카드뮴 처리시 미토콘드리아 세포막 전위차의 감소를 JC-1 형광염색을 통하여 확인하였다. 이상의 결과는 카드뮴에 의한 Hepalclc7 세포사멸의 신호전달기전은 세포질내에 있는 Bax가 미토콘드리아로 이동, cytochrome c의 세포질내로의 방출, 그리고 caspase-3, 9 pretease 활성화를 의해서 매개되는 것으로 판단된다. 또한 Bax 단백질의 발현변화가 미토콘드리아의 기능변화에 기여하였으리라 사료된다.

  • PDF

JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

  • Choi, Dae Woo;Kim, Do Kyung;Kanai, Yoshikatsu;Wempe, Michael F.;Endou, Hitoshi;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.599-607
    • /
    • 2017
  • Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.

고려인삼의 $F_1$ ATPase $\alpha$-Subunit 유전자(atpA)의 구조적 특성 (GTG as a Potential Translation Initiation Godon in Mitochondrial F1 ATPase $\alpha$-Subunit Gene(atpA) of Korean Ginseng)

  • Kim, Kab-Sig;Park, Ui-Sun;Choi, Kwan-Sam;Choi, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • 제19권2호
    • /
    • pp.127-133
    • /
    • 1995
  • The complete open reading frame (ORF) of o-subunit of the $F_1$ ATP synthase (atPA) in Korean ginseng mitochondria was identified by the sequence similarity with atPA genes in other plant mitochondria. The sequence alignment showed that the common translation initiation codon, ATG, in plant genes was replaced with GTG valid codon in Korean ginseng. The atPA gene from GTG to TGA termination codon was 1524 nucleotides long, and the sequence homology of nucleotides and deduced amino acids revealed high values of 92~97%. A deletion event of 6 nucleotides was observed at the 1468th nucleotide from the GTG in Korean ginseng, in contrast to that at the 1450th in other plants such as pea, common bean, soybean, sugar beet, and radish. An unidentified open reading frame (on7) was observed upstream of atmA ORF. No other ATG as an initiation codon was detected in the region between off and atmA ORF in Korean ginseng, although a pyrimidine cluster "TTTTCTTTT" was located in this region as in Oenothera and maize genes. It could be supposed that GTG codon in atpA gene of Korean ginseng mitochondria would act as an initiation codon as in microbial genes.ial genes.

  • PDF

Isorhamnetin의 근육세포 미토콘드리아 기능조절에 미치는 효과 (Effects of isorhamnetin on the regulation of mitochondrial function in C2C12 muscle cells)

  • 이막순;김양하
    • Journal of Nutrition and Health
    • /
    • 제54권4호
    • /
    • pp.335-341
    • /
    • 2021
  • Purpose: Muscle mitochondria play a key role in regulating fatty acid and glucose metabolism. Dysfunction of muscle mitochondria is associated with metabolic diseases such as obesity and type 2 diabetes. Isorhamnetin (ISOR), also known as 3-O-methylquercetin, a quercetin metabolite, is a naturally occurring flavonoid in many plants. This study evaluated the effects of ISOR on the regulation of the mitochondrial function of C2C12 muscle cells. Methods: C2C12 muscle cells were differentiated for 5 days, and then treated in various concentrations of ISOR. Cytotoxicity was determined by assessing cell viability using the water-soluble tetrazolium salt-8 assay principle at different concentrations of ISOR and time points. Levels of the mitochondrial DNA (mtDNA) content and gene expression were measured by quantitative real-time polymerase chain reaction. The citrate synthase (CS) activity was quantified by the enzymatic method. Results: ISOR at a concentration of 10 µM did not show any cytotoxic effects. ISOR increased the mtDNA copy number in a time- or dose-dependent manner. The messenger RNA levels of genes involved in mitochondrial function, such as peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein 3 were significantly stimulated by the ISOR treatment. The CS activity was also significantly increased in a time- or dose-dependent manner. Conclusion: These results suggest that ISOR enhances the regulation of mitochondrial function, which was at least partially mediated via the stimulation of the mtDNA replication, mitochondrial gene expression, and CS activity in C2C12 muscle cells. Therefore, ISOR may be useful as a potential food ingredient to prevent metabolic diseases-associated muscle mitochondrial dysfunction.

Donating Otx2 to support neighboring neuron survival

  • Kim, Hyoung-Tai;Prochiantz, Alain;Kim, Jin Woo
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.69-70
    • /
    • 2016
  • Mutations of orthodentricle homeobox 2 (OTX2) in human and mice often cause retinal dystrophy and nyctalopia, suggesting a role of OTX2 in mature retina, in addition to its functions in the development of the eye and retina. In support of this, the number of bipolar cells in Otx2+/− post-natal mouse retina was found to be significantly lower than normal. Degeneration of the cells becomes greater as the mice age, leading to the loss of vision. Especially, the type-2 OFF-cone bipolar cells, which do not express Otx2 mRNA but carry Otx2 protein, are most sensitive to Otx2 haplodeficiency. Interestingly, this bipolar cell subpopulation imports Otx2 protein from photoreceptors to protect itself from glutamate excitotoxicity in the dark. Moreover, in the bipolar cells, the exogenous Otx2 relocates to the mitochondria to support mitochondrial ATP synthesis. This novel mitochondrial activity of exogenous Otx2 highlights the therapeutic potential of Otx2 protein transduction in retinal dystrophy.

Downregulation of bcl-xL Is Relevant to UV-induced Apoptosis in Fibroblasts

  • Nakagawa, Yuki;Okada, Seiji;Hatano, Masahiko;Ebara, Masaaki;Saisho, Hiromitsu;Tokuhisa, Takeshi
    • BMB Reports
    • /
    • 제35권5호
    • /
    • pp.452-458
    • /
    • 2002
  • Exposure to ultraviolet light (UV) induces apoptosis in mammalian cells, The caspase group of proteases is required for the appotosis. This pathway is initiated by a release of cytochrome c from the mitochondria into the cytosol. Several Bcl-2 family proteins can regulate the release of cytochrome c by stabilizing the mitochondrial membrane. Here we show that expression of the endogenous bcl-xL was strongly downregulated in NIH3T3 cells within 2 h after UV-C irradiation, and that of bax was upregulated from 8 h after irradiation. Apoptosis was induced in more than 50% of the NIH3T3 cells 48 h after irradiation. Constitutive overexpression of bcl-xL in NIH3T3 cells protected the UV-induced apoptosis by preventing the loss of mitochondrial membrane potential and the activation of caspase 9. There results suggest that downregulation of Bcl-xL is relevant to UV-induced apoptosis of tibroblasts.

Endoplasmic Reticulum Mediated Necrosis-like Apoptosis of HeLa Cells Induced by Ca2+ Oscillation

  • Hu, Qingliu;Chang, Junlei;Tao, Litao;Yan, Guoliang;Xie, Mingchao;Wang, Zhao
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.709-716
    • /
    • 2005
  • Apoptosis and necrosis are distinguished by modality primarily. Here we show an apoptosis occurred instantly, induced by $300\;{\mu}M$ W-7 ((N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride), inhibitor of calmodulin), which demonstrated necrotic modality. As early as 30 min after W-7 addition, apoptotic (sub-diploid) peak could be detected by fluorescence-activated cell sorter (FACS), “DNA ladders” began to emerge also at this time point, activity of caspase-3 elevated obviously within this period. Absence of mitochondrial membrane potential (MMP) reduction and cytochrome c, AIF (apoptosis inducing factor) release, verified that this rapid apoptosis did not proceed through mitochondria pathway. Activation of caspase-12 and changes of other endoplasmic reticulum (ER) located proteins ascertained that ER pathway mediated this necrosis-like apoptosis. Our findings suggest that it is not credible to judge apoptosis by modality. Elucidation of ER pathway is helpful to comprehend the pathology of diseases associated with ER stress, and may offer a new approach to the therapy of cancer and neurodegenerative diseases.

Regulation of Apoptosis by Nitrosative Stress

  • Kim, Ki-Mo;Kim, Peter K.M.;Kwon, Young-Guen;Bai, Se-Kyung;Nam, Woo-Dong;Kim, Young-Myeong
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.127-133
    • /
    • 2002
  • Nitrosative stress can prevent or induce apoptosis. It occurs via S-nitrosylation by the interaction of nitric oxide (NO) with the biological thiols of proteins. Cellular redox potential and non-heme iron content determine S-nitrosylation. Apoptotic cell death is inhibited by S-nitrosylation of the redox-sensitive thiol in the catalytic site of caspase family proteases, which play an essential role in the apoptotic signal cascade. Nitrosative stress can also promote apoptosis by the activation of mitochondrial apoptotic pathways, such as the release of cytochrome c, an apoptosis-inducing factor, and endonuclease G from mitochondria, as well as the suppression of NF-${\kappa}B$ activity. In this article we reviewed the mechanisms whereby S-nitrosylation and nitrosative stress regulate the apoptotic signal cascade.