• Title/Summary/Keyword: mitigation impact

Search Result 349, Processing Time 0.027 seconds

Mechanical characteristics + differential settlement of CFG pile and cement-soil compacted pile about composite foundation under train load

  • Cheng, Xuansheng;Liu, Gongning;Gong, Lijun;Zhou, Xinhai;Shi, Baozhen
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • In recent years, the stability, safety and comfort of trains has received increased attention. The mechanical characteristics and differential settlement of the foundation are the main problems studied in high-speed railway research. The mechanical characteristics and differential settlement of the foundation are greatly affected by the ground treatment. Additionally, the effects of train load and earthquakes have a great impact. The dynamic action of the train will increase the vibration acceleration of the foundation and increase the cumulative deformation, and the earthquake action will affect the stability of the substructure. Earthquakes have an important practical significance for the dynamic analysis of the railway operation stage; therefore, considering the impact of earthquakes on the railway substructure stability has engineering significance. In this paper, finite element model of the CFG (Cement Fly-ash Gravel) pile + cement-soil compacted pile about composite foundation is established, and manual numerical incentive method is selected as the simulation principle. The mechanical characteristics and differential settlement of CFG pile + cement-soil compacted pile about composite foundation under train load are studied. The results show: under the train load, the neutral point of the side friction about CFG pile is located at nearly 7/8 of the pile length; the vertical dynamic stress-time history curves of the cement-soil compacted pile, CFG pile and soil between piles are all regular serrated shape, the vertical dynamic stress of CFG pile changes greatly, but the vertical dynamic stress of cement-soil compacted pile and soil between piles does not change much; the vertical displacement of CFG pile, cement-soil compacted pile and soil between piles change very little.

Economic Impact Analysis of Disaster Mitigation Projects in Hazardous Areas (자연재해위험지구 정비사업의 투자효과분석)

  • Heo, Bo-Young;Yu, Soonyoung;Kim, Sung-Wook
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.247-256
    • /
    • 2013
  • In order to improve the quality assurance of the disaster mitigation projects, the economic effect of these projects in the hazardous areas was analysed. Eight project sites were selected for analyses based on the disaster data during the previous 10 years, and the investment effect was evaluated using a benefit cost ratio (B/C). The benefit was estimated using the historical disaster data and presumed to continue for 30 years, while the cost was assumed with the total project cost. Analysis results indicate the B/C ratio is larger than 1 in the difference range, depending on factors such as impact areas and discount rates. According to the analysis results, the average B/C of the eight projects is 4.1 with assuming the discount rate of 4% and the impact diameter of 5 km, which implies that a disaster management project in hazardous areas will give the positive investment effects.

A Study on Optimized Placement of Green-Gray Infrastructure for Effective Flood Mitigation (효과적인 도시 홍수 저감을 위한 그린-그레이 인프라 위치 설정에 관한 연구)

  • Bae, Chae-Young;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • Urban flood management(UFM) strategy ought to consider the connections and interactions between existing and new infrastructures to manage stormwater and improve the capacity to treat water. It is also important to demonstrate strategies that can be implemented to reduce the flow at flooding sources and minimize flood risk at critical locations. Although the general theory of spatial impact is popular, modeling guidelines that can provide information for implementation in real-world plans are still lacking. Under such background, this study conducted a modeling research based on an actual target site to confirm the hypothesis that it is appropriate to install green infrastructure(GI) in the source area and to take structural protection measures in the impact area, as summarized in previous studies. The results of the study proved the hypothesis, but the results were different from the hypothesis depending on which hydrological performance indicators were targeted. This study will contribute to demonstrating the effectiveness of strategies that can be implemented to reduce the flow at flooding sources and minimize the risk of flooding in critical locations in terms of spatial planning and regeneration.

Analysis of Runoff Reduction Effect of Flood Mitigation Policies based on Cost-Benefit Perspective (비용-편익을 고려한 홍수 대응 정책의 유출 저감 효과 분석)

  • Jee, Hee Won;Kim, Hyeonju;Seo, Seung Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.721-733
    • /
    • 2023
  • As the frequency of extreme rainfall events increase due to climate change, climate change adaptation measures have been proposed by the central and local governments. In order to reduce flood damage in urban areas, various flood response policies, such as low impact development techniques and enhancement of the capacity of rainwater drainage networks, have been proposed. When these policies are established, regional characteristics and policy-effectiveness from the cost-benefit perspective must be considered for the flood mitigation measures. In this study, capacity enhancement of rainwater pipe networks and low impact development techniques including green roof and permeable pavement techniques are selected. And the flood reduction effect of the target watershed, Gwanak campus of Seoul National University, was analyzed using SWMM model which is an urban runoff simulation model. In addition, along with the quantified urban flooding reduction outputs, construction and operation costs for various policy scenarios were calculated so that cost-benefit analyses were conducted to analyze the effectiveness of the applied policy scenarios. As a result of cost-benefit analysis, a policy that adopts both permeable pavement and rainwater pipe expansion was selected as the best cost-effective scenario for flood mitigation. The research methodology, proposed in this study, is expected to be utilized for decision-making in the planning stage for flood mitigation measures for each region.

Off-gassing Woodblock Prints - Storage Impact Considerations and Mitigation Strategies -

  • Romero, Ana Teresa Guimaraes;Matsui, Toshiya;Nagahama, Eriko
    • Journal of Conservation Science
    • /
    • v.36 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • The storage environment of a Japanese woodblock print collection was assessed for organic acids. The active air sampling method was used to collect organic acid emissions in the low microgram range from areas of a selected woodblock print with different pigments, following which an off-gassing mitigation strategy based on the fan filter unit(FFU) system was investigated. Research findings revealed that the off-gassing behavior of woodblock prints is significantly impacted by storage practices and to a lesser degree by the pigments. The FFU system can be used as a mitigation strategy, but the permanence of the results depends on the storage conditions.

Estimation of Debris Flow Impact Forces on Mitigation Structures Using Small-Scale Modelling (모형축소실험을 이용한 토석류 방지시설 충격하중 평가)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Kim, Jin-Ho;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.191-205
    • /
    • 2017
  • We use small-scale modelling to estimate the impact ofrce of debris flows on erosion control dams (ECD) and ring nets. The results indicate that the viscoelastic debris flows produced impact forces of 4.14, 3.66, 1.66 kN from the bottom to the top of the ECD. Ring net tests produced a similar trend with generally smaller impact forces (2.28, 1.95, and 1.49 kN). Numerical analysis showed that the weight of the ECD (e.g., concrete retaining walls) provided resistance against the debris flow, whereas deformation of the ring net by elastic-elongation and aggregate penetration reduced the impact force by up to 45% compared with that of the ECD.

A Stability Analysis for Vehicle Impact in U-Channel Segmental Concrete Bridges (U-채널 세그멘탈 콘크리트 교량의 차량충돌에 대한 안전성 분석)

  • Choi, Dong-Ho;Na, Ho-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.17-25
    • /
    • 2010
  • This paper studied on stability of the U-channel segmental concrete bridge under vehicle-impact loads. The U-channel bridge has advantages in that it reduces an additional dead load and the edge beams role as a barrier. But it has a dangerous factor which collapses the bridge structure when the edge beams are ruptured. Therefore, it is necessary to verify behaviors of the bridge system under vehicle-impact loads. Static and dynamic vehicle impact simulations were carried out on the basis of AASHTO LRFD design specifications. In case of the static analysis, equivalent static loads specified in the AASHTO codes are loaded on the edge beams and in case of the dynamic analysis, FEM vehicle models are modeled by applying the dynamic test specifications of AASHTO codes. As a result, it is shown that U-channel bridge system has sufficient safety against static and dynamic impact loads specified in the AASHTO LRFD design specifications.

Review of Multilateral Development Bank's Methodologiesfor Consideration of Climate Change Impactsin Project Due Diligence (기후변화 영향평가와 사업심사 연계를 위한 다자개발은행의 방법론 고찰)

  • Jang, Yoojung
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.2
    • /
    • pp.106-116
    • /
    • 2022
  • Multilateral Development Banks (MDBs) have actively responded to global climate change, and developed and operated the Common Principles for Climate Finance Tracking. They estimate climate finance in a granular manner with a conservative view. In other words, the MDBs track their financing only for those elements or proportions of projects that directly contribute to or promote climate adaptation or mitigation. The MDBs have reported jointly on climate finance since the first edition in 2012, which reported for 2011 and up to the 10th edition in 2021, which reported for 2020. MDBs apply two difference methodologies for adaptation and mitigation. For adaptation, the methodology is based on a context and location specific approach and captures the amounts associated with activities directly linked to vulnerability to climate change. For mitigation, it is evaluated in accordance with a comprehensive list of activities thatreduce greenhouse gas emissions. The result of climate risk assessment is one of the major due diligence items for MDBs alongside with that of environmental and social impact assessment. Under the circumstance that many countries endeavor to deal with climate change at project level, it is meaningful to understand how MDBs have addressed climate change issues in their project approval process. This would be a good reference to establish a methodology for responding to climate change and to expand scope of environmental and social impact assessment.

Impact Condition of Safety Performance Evaluation for Longitudinal Barriers of SMART Highway (스마트하이웨이 종방향 방호울타리안전성능 평가를 위한 충돌조건)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.49-57
    • /
    • 2009
  • To minimze the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions, the impact condition for longitudinal barriers of SMART highway was determined to be quite larger than the existing maximum impact condition. The impact condition consists of impact vehicles, impact velocities, and impact angles. To consider the occupant safety of passenger cars as much as possible, a small car with high risk during impact was selected as the impact vehicle for the evaluation of occupant risk. The impact velocity was determined to be 20% larger than the existing maximum impact velocity in order to include accident impact velocities as much as possible. The impact angle was determined to include most of expected accident impact angles. Computer simulations using various impact conditions were conducted for the existing domestic highest-performance medium and roadside barrier. How the suggested impact condition has an effect on the occupant safety was investigated. The existing domestic highest-performance medium and roadside barriers could not satisfy the suggested impact condition. New high-performance longitudinal barriers are required to minimize the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions.