• Title/Summary/Keyword: mission planning

Search Result 233, Processing Time 0.021 seconds

Implementation of Mission Service Model and Development Tool for Effective Mission Operation in Military Environment (전장공간의 효율적 임무수행을 위한 임무서비스 모델 및 개발도구 구현)

  • Song, Seheon;Byun, Kohun;Lee, Sangil;Park, JaeHyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.285-292
    • /
    • 2017
  • There are technological, operational and environmental constraints at tactical edge, which are disconnected operation, intermittent connectivity, and limited bandwidth (DIL), size, weight and power (SWaP) limitations, ad-hoc and mobile network, and so on. To overcome these limitations and constraints, we use service-oriented architecture (SOA) based technologies. In our research, we propose a hierarchical mission service model that supports service-oriented mission planning and execution in order for a commander to operate various SW required for mission in battlefield environment. We will also implement development tools that utilize the workflow technology and semantic capability-based recommendation and apply them to combat mission scenarios to demonstrate effectiveness.

Mission Oriented Global Path Generation for Unmanned Combat Vehicle Based on the Mission Type and Multiple Grid Maps (임무유형과 다중 격자지도 기반의 임무지향적 전역경로 생성 연구)

  • Lee, Ho-Joo;Lee, Young-Il;Lee, Myung-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a global path generation method is suggested using multiple grid maps connected with the mission type of unmanned combat vehicle(UCV). In order to carry out a mission for UCV, it is essential to find a global path which is coincident with the characteristics of the mission. This can be done by considering various combat circumstances represented as grid maps such as velocity map, threat map and communication map. Cost functions of multiple grid maps are linearly combined and normalized to them simultaneously for the path generation. The proposed method is realized using $A^*$, a well known search algorithm, and cost functions are normalized in the ratio of the traverse time which is one of critical information should be provided with the operators using the velocity map. By the experiments, it is checked found global paths match with the mission type by reflecting input data of grid maps properly and the computation time is short enough to regenerate paths in real time as combat circumstances change.

Development of Performance Evaluation Method for Mission Autonomy Software based on UxAS (UxAS 기반 임무 자율화 소프트웨어 성능 평가 기법 개발)

  • Dong-geon Han;Yun-geun Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.331-337
    • /
    • 2024
  • Mission autonomy system should be embedded on UAV (unmanned aerial vehicle) for mosaic warfare where UAVs autonomously assign tasks to themselves. UxAS (unmanned x-systems autonomy service) proposed by Air force research laboratory is mission autonomy system for unmanned platforms. UxAS has extensible structure composed of numerous module services. We have developed mission autonomy system based on UxAS that performs mission allocation and path planning. In this paper, We present a method of analyzing and evaluating the mission autonomy software according to the performance evaluation index.

Application for en-Route mission to Decentralized Task Allocation (경로가 주어진 임무 상황에서 분산 임무할당 알고리즘의 적용 방안 연구)

  • Kim, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.156-161
    • /
    • 2020
  • In an environment that operates multiple UAVs, the use of a decentralized task allocation algorithm has more robustness from a single failure of UAV on the mission because there is no central command center. In addition, UAVs have situational awareness and redistribute tasks among themselves, which can expand the mission range. The use of multiple UAVs in a mission has increased as the agent hardware has decreased in size and cost. The decentralized mission-planning algorithm has the advantages of a larger mission range and robustness to a single failure during the mission. This paper extended the type of mission the uses CBBA, which is the most well-known decentralized task allocation algorithm, to the point mission and en-route mission. This will describe the real mission situation that has the purpose of surveillance. A Monte-Carlo simulation was conducted in the case of multiple agents in the task-rich environment, and the global rewards of each case were compared.

3-Dimensional UAV Path Optimization Based on Battery Usage Prediction Model (배터리 사용량 예측 모델 기반 3차원 UAV 경로 최적화)

  • Kang, Tae Young;Kim, Seung Hoon;Park, Kyung In;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.989-996
    • /
    • 2021
  • In the case of an unmanned aerial vehicle using a battery as a power source, there are restrictions in performing the mission because the battery capacity is limited. To extend the mission capability, it is important to minimize battery usage while the flight to the mission area. In addition, by using the battery usage prediction model, the possibility of mission completeness can be determined and it can be a criterion for selecting an emergent landing point in the mission planning stage. In this paper, we propose a battery usage prediction model considering as one of the environmental factors in the three-dimensional space. The required power is calculated according to the flight geometry of an unmanned aerial vehicle. True battery usage which is predicted from the required power is verified through the comparison with the battery usage prediction model. The optimal flight trajectory that minimizes battery usage is produced and compared with the shortest travel distance.

정지궤도 인공위성 추력기 모델링

  • Park, Eung-Sik;Park, Bong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.96-104
    • /
    • 2003
  • Geostationary satellite propulsion system provides satellite with the velocity increment for attitude control operations and sationkeeping operations from satellite launch to de-orbit at the end of life. Today, various types of propulsion system and its thrusters are produced by worldwide manufactures. Therefore, geostationary satellite manufacturers give significant modification to the Mission Analysis Software whenever different type of propulsion system type is adopted. Mission Analysis Software is a tool for planning and verification of satellite mission. For the development of the Generalized Mission Analysis Software, many thrusters are carefully investigated and modeled.

  • PDF

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

A Wartime·Peacetime OMS/MP Analysis Model for a Naval Ship and Case Study (함정 전·평시 OMS/MP 설정 방법론 연구 및 사례)

  • Ha, Sungchul;Kook, Jungho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.660-666
    • /
    • 2012
  • The weapon system is getting more and more expensive, complex and smarter. Therefore, efficiently and effectively, it is important to operate the weapon system. OMS/MP is a document to quantify operational factors like as environment, mission, mode etc. It is important data to perform RAM analysis in early weapon development phase and operate better a weapon system. This paper present a process and framework of OMS/MP for a naval ship with a deep analysis of relevant domestic and abroad case studies. It propose OMS/MP analysis framework based on wartime scenario and mission area analysis. This result will contribute not only improvement for the availability of a naval ship but also enhancement of RAM analysis process.

Mission Trajectory Design for Lunar Explorer using Variable Low Thrust (가변 저추력을 이용한 달탐사 임무궤도 설계)

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup;Song, Young-Joo;Park, Sang-Yong
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • Since the 1st space race between the United States and Soviet Union during the 1960s, we are competing 2nd space race to occupy the Lunar territory. Since the United States announced to construct the Lunar Base by the end of 2020, ED, Japan, and China launched Lunar explorers successfully. Even India is planning to launch a Lunar explorer in 2008. Korean government also announced that the Korea will launch first Lunar explorer in 2020. In this research Lunar mission trajectory design which will be fundamental data for Lunar mission with variable low thrust and Lunar mission trajectory which has a similar mission specification to SMART-1 are presented.

  • PDF

Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations (발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증)

  • Lee, Byoung-Sun;Kim, In-Jun;Lee, Soo-Jeon;Hwang, Yoo-La;Jung, Won-Chan;Kim, Jae-Hoon;Kim, Hae-Yeon;Lee, Hoon-Hee;Lee, Sang-Cherl;Cho, Young-Min;Kim, Bang-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • COMS(Chollian) satellite which was launched on June 26, 2010 has three payloads for Ka-band communications, geostationary ocean color imaging and meteorological imaging. In order to make efficient use of the geostationary satellite, a concept of mission operations has been considered from the beginning of the satellite ground control system development. COMS satellite mission operations are classified by daily, weekly, monthly, and seasonal operations. Daily satellite operations include mission planning, command planning and transmission, telemetry processing and analysis, ranging and orbit determination, ephemeris and event prediction, and wheel off-loading set point parameter calculation. As a weekly operation, North-South station keeping maneuver and East-West station keeping maneuver should be performed on Tuesday and Thursday, respectively. Spacecraft oscillator updating parameter should be calculated and uploaded once a month. Eclipse operations should be performed during a vernal equinox and autumnal equinox season. In this paper, operational validations of the major functions in COMS SGCS are presented for the first three month of in-orbit test operations. All of the major functions have been successfully verified and the COMS SGCS will be used for the mission operations of the COMS satellite for 7 years of mission life time and even more.