• Title/Summary/Keyword: mission control system

Search Result 398, Processing Time 0.023 seconds

Brief Summary of KSLV-I Upper Stage Kick Motor Development (KSLV-I 상단 킥모터 개발 개요)

  • Lee, Hanju;Lee, Jung Ho;Oh, Seung Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2014
  • KSLV-I (Korea Space Launch Vehicle-I) upper stage KM (Kick Motor) is a solid propulsion system which consists of igniter, SAD (Safety Arming Device), composite case, and submerged nozzle capable of TVC (Thrust Vector Control) actuation. Each subsystem of KM fulfilled development requirements for achieving a flight mission successfully. We confirmed the successful development of KM from the $3^{rd}$ flight test results of NARO on January 30, 2013. This article deals with the requirements of KM and the results on configuration management, mass variation, thrust axis alignment, and major test results and so on.

WCDMA Simulator Engine for 3G Wireless Network

  • Rashld Zainol Abidin Abdul;Ramaiah Karamchand Babu Atchitha
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.3
    • /
    • pp.36-47
    • /
    • 2003
  • Wideband Code Division Multiple Access (WCDMA) is one of the air interface techniques proposed for the third generation (3G) mobile communication system. WCDMA was selected because it fulfills the IMT-2000 requirements for higher data rate trans mission, support of multimedia capabilities and other flexible services due to its variable bit rates and larger bandwidth, improved capacity and coverage, efficient power control and support for advanced and improved detector structures. Performance evaluation of 3G wireless network through simulation plays an important role in the design and implementation of the actual system, aiding the wireless system designer by providing them the necessary performance conformance statistics prior to implementation. In accordance with this goal, a simulator engine was developed entirely on a MATLAB platform to emulate the behaviour of the WCDMA air interface for both the uplink and downlink in a real world fading mobile environment. This paper discuss the development of the simulator along with a brief description of its functionalities and user interface. The WCDMA air interface mode focused in this paper is in accordance to the 3GPPs frequency division duplex (FDD) mode and restricted to the physical layer description. Performance results for the selected cases for the downlink, uplink, varying mobile velocity and sampling rates are also provided.

  • PDF

Convergence factor Influencing Job Satisfaction of Radiographer (방사선사의 직무만족도에 영향을 미치는 융복합요인)

  • Lee, Mi-Hwa
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.357-368
    • /
    • 2015
  • This cross-sectional study was performed to offer radiographer who registered to the Korean Association of Radiographers as a basic material promote job satisfaction and lower job stress. A total of 213 radiographer were surveyed using a self-administered questionnaire. The 105 questionnaires consist of general characteristics, job characteristics, job stress, and job satisfaction. The job satisfaction was categorized into 3 sub-scales; psychological variables, environmental variables, and structural variables. The job stress insufficient job control, interpersonal conflict, job insecurity, organizational system, lack of reward, and occupational climate. Job satisfaction in psychological variables of radiographer was higher in the radiographers who have a high level of education, work in seoul,have a high sense of mission, don't have job leaving attitude, have a lower job insecurity. Job satisfaction in environmental variables of radiographer was higher in the radiographers who get lower salary. Job satisfaction in structural variables of radiographer was higher in the radiographers who have a high sense of mission, don't have job leaving attitude, have a lower organizational system, lack of reward, and occupational climate. Job satisfaction of radiographer was higher in th radiographers who don't have job leaving attitude, have a high sense of mission, have a lower lack of reward, and occupational climate.

Real-time Tele-operated Drone System with LTE Communication (LTE 통신을 이용한 실시간 원격주행 드론 시스템)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.35-40
    • /
    • 2019
  • In this research, we suggest a real-time tele-driving system for unmanned drone operations using the LTE communication system. The drone operator is located 180km away and controls the altitude and position of the drone with a 50ms time delay. The motion data and video from the drone is streamed to the operator. The video is played on the operator's head-mounted display (HMD) and the motion data emulates the drone on the simulator for the operator. In general, a drone is operated using RF signal and the maximum distance for direct control is limited to 2km. For long range drone control over 2km, an auto flying mode is enabled using a mission plan along with GPS data. In an emergency situation, the autopilot is stopped and the "return home" function is executed. In this research, the immersion tele-driving system is suggested for drone operation with a 50ms time delay using LTE communication. A successful test run of the suggested tele-driving system has already been performed between an operator in Daejeon and a drone in Inje (Gangwon-Do) which is approximately 180km apart.

On-orbit Thermal Analysis for Verification of Thermal Design of 6 U Nano-Satellite with Multiple Payloads (멀티 탑재체를 가진 6 U 초소형위성의 열설계 검증을 위한 궤도 열해석)

  • Kim, Ji-Seok;Kim, Hui-Kyung;Kim, Min-Ki;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.455-466
    • /
    • 2020
  • In this study, we built a thermal model for SNIPE 6U nano-satellite which has scientific mission for measuring science data in near Earth space environment and described thermal design based on the thermal model. And the validity of the thermal design was verified through the on-orbit thermal analysis. The thermal design was carried out mainly on the passive thermal control techniques such as surface finishes, insulators, and thermal conductors in consideration of the characteristics of the nano-satellite. However, the components with narrow operating temperature range and directly exposed to the orbital thermal environments, such as a battery and thrusters, are accomodated with heaters to satisfy the temperature requirements. On-orbit thermal analysis conditions are based on the basic orbital conditions of the satellite, and thermal analysis was performed for Normal mode, Launch & Early Orbit Phase (LEOP), Safehold mode, and Maneuver mode which are classified by the power consumption and the attitude of the satellite according to the mission scenario. The analysis results for each mode confirmed that every component satisfies the temperature requirement. In addition, the heater capacity and duty cycle of the battery and thruster were calculated through the analysis results of the Safehold mode.

Adaptive Blowing Control Algorithm for Autonomous Control of Underwater Flight Vehicle (수중 비행체의 자율제어를 위한 적응 부상 제어 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.482-487
    • /
    • 2008
  • In case of flooding, the underwater flight vehicle (UFV) executes the blowing by blowing ballast tanks off using high pressure air (HPA), while it also uses control planes and a propulsion unit to reduce the overshoot depth caused by a flooding and blowing sequence. However, the conventional whole HPA blow-off method lets the body on the surface after blowing despite slight flooding. This results in the unnecessary mission failure or body exposure. Therefore, it is necessary to keep the body at the near surface by the blowing control while reducing the overshoot depth. To solve this problem, an adaptive blowing control algorithm, which is based on the decomposition method expanding the expert knowledge in depth control and the adaptive method using fuzzy basis function expansion (FBFE), is proposed. To verify the performance of the proposed algorithm, the blowing control of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the UFV blowing control system online.

Hybrid Rocket Thrust Control in an Environment With Decreasing Oxidizer Supply Pressure (산화제 공급압력이 감소하는 환경에서 하이브리드 로켓 추력제어)

  • Chae, Donghoon;Chae, Heesang;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.325-332
    • /
    • 2022
  • The vertical take-off and vertical landing (VTVL) function is essential to carry out exploration missions on the moon or Mars. For this, the engine of the exploration vehicle must have appropriate thrust control accuracy and response time. The hybrid rocket engine (HRE) is known to have a high level of thrust control capability that can satisfy these conditions. This study aims to first verify whether the thrust control performance of the developed HRE is suitable for VTVL. To this end, an oxidizer supply system that does not use a pressurization device was adopted, aiming for a mission time of about 10 seconds. In this study, the thrust control characteristics appearing under various supply pressure decreasing conditions were identified through experiments. Appropriate tank and charging conditions were set from the experimental results. In addition, the results of previous studies and current study's test were compared to confirm whether the developed HRE had adequate control performance for VTVL, and finally, the thrust control performance was verified through altitude control simulation.

Development and Operation of EDS for Monitoring KSLV-I Flight Status in Space Center (나로호(KSLV-I) 비행상태 감시를 위한 우주센터 원격수신자료전시시스템 구축과 운용)

  • Choi, Kyung Jun;Kim, Jeong-Seok;Choi, Yong-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.29-32
    • /
    • 2016
  • 본 논문에서는 나로호(KSLV-I) 비행상태의 실시간 감시를 목적으로 국내에서는 처음 개발된 우주센터 원격수신자료전시시스템(EDS)의 구축과 운용을 소개한다. EDS는 우주센터 발사통제시스템의 주요 시스템 중 하나이고 그 역할은 위성발사체의 비행에 중대한 영향을 주는 주요정보(QLM)와 궤적정보(TSPI)를 수신하여 실시간으로 처리함으로써 탑재 서브시스템별 전문가들이 위성발사체의 비행 상태를 감시할 수 있도록 지원하는 것이다. EDS는 3회에 걸친 나로호 비행시험에서 그 역할에 따라 매회 8대가 운영되었으며 임무를 성공적으로 수행하였다. 본 시스템을 기반으로 추후 발전된 형태의 한국형발사체(KSLV-II) 비행상태의 실시간 감시시스템의 구축이 가능할 것으로 예상된다.

  • PDF

KSLV-I Kick Motor System Thrust Axis Alignment (KSLV-I 킥모터 시스템 추력 축 정렬)

  • Lee, Han-Ju;Jung, Dong-Ho;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.138-142
    • /
    • 2010
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to align thrust axis to vehicle axis. This article deals with the simple method of thrust axis alignment of Kick Motor.

Orbit Determination Accuracy Improvement for Geostationary Satellite with Single Station Antenna Tracking Data

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Hae-Yeon;Kim, Hae-Dong;Kim, Jae-Hoon
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.774-782
    • /
    • 2008
  • An operational orbit determination (OD) and prediction system for the geostationary Communication, Ocean, and Meteorological Satellite (COMS) mission requires accurate satellite positioning knowledge to accomplish image navigation registration on the ground. Ranging and tracking data from a single ground station is used for COMS OD in normal operation. However, the orbital longitude of the COMS is so close to that of satellite tracking sites that geometric singularity affects observability. A method to solve the azimuth bias of a single station in singularity is to periodically apply an estimated azimuth bias using the ranging and tracking data of two stations. Velocity increments of a wheel off-loading maneuver which is performed twice a day are fixed by planned values without considering maneuver efficiency during OD. Using only single-station data with the correction of the azimuth bias, OD can achieve three-sigma position accuracy on the order of 1.5 km root-sum-square.

  • PDF