• 제목/요약/키워드: mission control

검색결과 621건 처리시간 0.028초

Integrity, Orbit Determination and Time Synchronisation Algorithms for Galileo

  • Merino, M.M. Romay;Medel, C. Hernandez;Piedelobo, J.R. Martin
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.9-14
    • /
    • 2006
  • Galileo is the European Global Navigation Satellite System, under civilian control, and consists on a constellation of medium Earth orbit satellites and its associated ground infrastructure. Galileo will provide to their users highly accurate global positioning services and their associated integrity information. The elements in charge of the computation of Galileo navigation and integrity information are the OSPF (Orbit Synchronization Processing Facility) and IPF (Integrity Processing Facility), within the Galileo Ground Mission Segment (GMS). Navigation algorithms play a key role in the provision of the Galileo Mission, since they are responsible for computing the essential information the users need to calculate their position: the satellite ephemeris and clock offsets. Such information is generated in the Galileo Ground Mission Segment and broadcast by the satellites within the navigation signal, together with the expected a-priori accuracy (SISA: Signal-In-Space Accuracy), which is the parameter that in fault-free conditions makes the overbounding the predicted ephemeris and clock model errors for the Worst User Location. In parallel, the integrity algorithms of the GMS are responsible of providing a real-time monitoring of the satellite status with timely alarm messages in case of failures. The accuracy of the integrity monitoring system is characterized by the SISMA (Signal In Space Monitoring Accuracy), which is also broadcast to the users through the integrity message.

  • PDF

Zumwalt(DDG-1000)급 구축함의 운용 시스템 및 탑재 가능 무기체계 분석을 통한 시사점 도출 (The implication derived from operating control organization and feasible weapon system analysis of Zumwalt(DDG-1000) Class Destroyer)

  • 이형민
    • Strategy21
    • /
    • 통권34호
    • /
    • pp.178-206
    • /
    • 2014
  • The battlefield environment in the maritime has been changed by advanced IT technology, variation of naval warfare condition, and developed military science and technology. In addition, state-of-the-art surface combatants has become to multi-purpose battleship that is heavily armed in order to meet actively in composed future sea battlefield condition and perform multi-purpose missions as well as having capability of strategic strike. To maximize the combat strength and survivability of ship, it is not only possible for Zumwalt(DDG-1000) class combatant to conduct multi-purpose mission with advanced weapon system installation, innovative hull form and upper structure such as deckhouse, shipboard high-powered sensor, total ship computing environment, and integrated power control but it was designed so that can be installed with energy based weapon systems in immediate future. Zumwalt class combatant has been set a high value with enormous threatening surface battleship in the present, it seems to be expected that this ship will be restraint means during operation in the littoral. The advent of Zumwalt class battleship in the US Navy can be constructed as a powerful intention of naval strength building for preparing future warfare. It is required surface ship that can be perform multi-purpose mission when the trend of constructed surface combatants was analyzed. In addition, shipboard system has been continuously modernized to keep the optimized ship and maximize the survivability with high-powered detection and surveillance sensor as well as modularity of combat system to efficient operation.

Throughput Analysis of SBC for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Chang Y.J.;Lee S.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.593-596
    • /
    • 2005
  • The MSC is a remote sensing instrument with very high performance that is to be installed on KOMPSAT2 satellite. The MSC consists of EOS (Electro-Optic Subsystem), PMU (Payload Management Unit) and PDTS (Payload Data Transmission Subsystem). PMU controls and monitors all the other payload units by sending commands and collecting telemetry. PMU is in charge of interfacing between payload system and satellite bus system. PMU gets commands from ground-station via OBC (On-Board Computer) that is a main controller of the satellite bus system and sends telemetry to the ground-station via OBC. There is a processor module, called SBC (Single Board Computer) in the PMU. The SBC is a main controller of the MSC system. The main roles of the SBC are payload mission management, command validation and execution, telemetry collection and monitoring, ancillary data handling, event reporting, power control of payload sub-units and communication with these units. Intel's 80486DX2 processor has been used for the SBC. Due to the fact that the SBC plays important roles for imaging mission execution and handles a lot of control data that is required for payload operation, it is required to make analysis of the CPU load when it is in maximum operation mode. In this paper, the analysis and measurement results of the SBC throughput in the maximum operation mode.

  • PDF

효율적 군용 드론 작전 운영을 위한 Drone Force Deployment Optimization 알고리즘 (Drone Force Deployment Optimization Algorithm For Efficient Military Drone Operations)

  • 송주영;장현덕;정종문
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.211-219
    • /
    • 2020
  • 본 논문에서는 4차산업의 혁명의 핵심 기술 중 사물 인터넷 (Internet of Things)과 드론(Drone)을 접목시킨 드론 인터넷(Internet of Drones)에 대해서 연구하였다. IoD 기술은 실제 전장에서 실제 전장과 C4ISR 작전을 효율적이고 경제적으로 운영하는데 특히 중요하다. 본 연구는 드론의 제한된 배터리 용량과 군의 드론 전사 육성 및 도입, 운용에 따른 예산 책정 기준 부재에 따른 문제점을 해결하는데 목표가 있다. 이에 따라 드론 투입 작전 상황 발생 시 임무 지역 (Mission area)이 정해지고 그에 따른 임무 지점 (Hovering point)과 임무 완료 제한시간이 정해질 경우, 최소한 몇 대의 작전 드론을 투입하여야 가장 경제적이고 효율적인 작전 운용이 가능한지 작전 투입 드론의 대수를 최적화해주는 DFDO(Drone Force Deployment Optimization) 알고리즘을 제안한다.

천리안 위성을 위한 위성 지상국 후보지 전파 환경 측정 및 간섭 연구 (A Study of Radio-Wave Interference on Location Selection of Satellite Ground Stations)

  • 양재수;배상수;황유민;김진영
    • 한국전자파학회논문지
    • /
    • 제25권9호
    • /
    • pp.944-951
    • /
    • 2014
  • 본 논문에서는 위성의 지상국 위치를 선정함에 있어 전파 간섭을 피하고, 사용자의 위성활용도를 극대화하기 위한 지상국 위치 선정 전파 간섭 연구이다. 위성 지상국의 위치 선정을 위해 부지 확보가 용이하고, 평가지표의 평가항목별로 평가가 가능하다고 판단되는 지상국 후보지에 대해 전파 환경을 조사하고, 측정 결과를 제시하였으며, 10명의 전문가의 적합성 판단을 통해 후보지의 적합성에 대해 검토하였다. 향후 다른 후보지들의 측정 결과와 비교를 통해 최적의 지상국 위치를 선정할 수 있도록 하였다. 또한, 위성 지상국을 구축하고 있는 세계적 추세에 맞추어, 우리나라의 위성 지상국 위치 선정을 위한 정량적인 평가기준이 될 수 있다.

효과적인 재난현장 지휘에 관한 연구: 세월호 사례의 교훈 (A Study on the Effective Command of Disaster Site: Lessons Learned from Sinking of the Sewol Ferry)

  • 김성근;황경태
    • 디지털융복합연구
    • /
    • 제12권11호
    • /
    • pp.1-12
    • /
    • 2014
  • 오늘날 각종 재난발생 유형이 다양해지고 다기능화 된 도시 구조로 예측 불허의 재난 발생이 우려되고 있다. 또한 지구 온난화 등으로 재난이 한번 발생했다 하면 대형화되고 있고, 재난 수습을 위하여 가용한 자원을 최대한 동원하여야 하며, 재난현장이 실시간대 언론 등 미디어를 통해 생중계되는 상황이기에 재난현장 지휘자는 그 모든 요소를 고려하여 재난현장을 지휘해야 한다. 그러나 재난현장 지휘에 영향을 미치는 요소는 그 중요성에도 불구하고, 여기에 관련된 사전 연구가 거의 없는 실정이다. 이에 따라 본 연구에서는 국방 분야에서 전투현장 지휘에 적용되고 있는 요소인 METT-TC(Mission, Enemy, Troops, Terrain and weather, Time available, and Civilian considerations)를 기반으로, 일반 재난현장을 효과적으로 지휘하는데 영향을 미치는 요소로 MORT-TEC(Mission, Object, Resources available, Terrain and weather, Time available, Exercise, and Civilian considerations)를 제안한다. 이러한 요소를 세월호 구조 상황에 적용해 봄으로써, 향후 연구 및 재난현장의 지휘자들에게 도움이 될 수 있는 정책적인 의미를 제시한다.

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

고해상도 다기능 스테레오 카메라 지상 검증 및 분석 시스템 구현 (Implementation of theVerification and Analysis System for the High-Resolution Stereo Camera)

  • 신상윤;고형호
    • 대한원격탐사학회지
    • /
    • 제35권3호
    • /
    • pp.471-482
    • /
    • 2019
  • 달 탐사용 고해상도 스테레오 카메라의 임무는 달 궤도선 및 착륙 선에 탑재되어 달 표면의 3차원 지형정보를 제공하는데 있다. 이를 통해, 달 착륙 후보지를 탐색하고 착륙 시에는 달 표면 근접에 따른 근거리 입체영상을 실시간으로 제공하여 정확한 지점에 착륙이 가능하도록 한다. 본 논문에서는 달 탐사선에 탑재되는 달 탐사용 고해상도 카메라 개발을 위한 지상모델인 다기능 스테레오 카메라를 활용하여 고해상도 스테레오 카메라에 요구되는 임무를 검증하고 결과를 분석하기 위해 지상검증 및 분석 시스템을 제안하였다. 지상검증 및 분석 시스템은 임무 검증을 위한 임무검증항목과 시험계획을 제공하며, 시험 수행 후 결과를 분석하게 된다. 이를 위해 본 논문에서는 달 지형과 유사한 지역을 대상으로 지상 임무항목시험 계획을 세우고, 항공촬영을 통해 스테레오 영상을 획득하였다. 분석장치를 통해 스테레오 영상으로부터 영상을 보정 및 매칭 후 수치표고모델(DEM)을 추출하고 3차원 영상을 생성하여 결과를 분석하였다. 달 탐사용 고해상도 카메라에 요구되는 임무수행항목이 검증되었고, 스테레오 영상을 처리할 수 있는 지상처리분석 시스템이 확보 되었다.

The Simulation and Research of Information for Space Craft(Autonomous Spacecraft Health Monitoring/Data Validation Control Systems)

  • Kim, H;Jhonson, R.;Zalewski, D.;Qu, Z.;Durrance, S.T.;Ham, C.
    • 한국산학기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.81-89
    • /
    • 2001
  • 우주 항공위성 시스템은 변하는 불확실한 우주항공 환경에(서) 운행되고 지상기지국으로부터의 원격통신 없이 장시간 동안 동작해야 할 자율적인 능력이 요구되고, 결함 없이 임무를 수행하여야 하며, 시스템에서 계측된 데이터의 신뢰성을 유지하기 위한 고장 상태 검출과 오류 수정 시스템을 차보하는 것이 중요하다. 본 논문에서는 확장 칼만 필터 기법을 적용한 동적모델 시뮬레이션 기법(High Fidelity, Dynamic Model-based Simulation)을 제안하였으며, 제안된 시스템은 비정상적인 데이터의 효과적인 검출과 대응이 가능해짐으로써 신뢰성 있는 우주항공위성시스템을 구축하도록 자동 상태 진단/데이터 시스템에 고장검출/오류수정 시스템을 적용하는 것이다. (Autonomous Spacecraft Health Monitoring/Data Validation Control System : ASHMDVCS).

  • PDF