• Title/Summary/Keyword: missiles

Search Result 367, Processing Time 0.022 seconds

Guidance Scheme for Air-to-Ground Anti-tank Missiles Under Physical Constraints (물리적 구속조건을 고려한 공대지 대전차 유도탄의 유도기법 연구)

  • Park, Bong-Gyun;Um, Tae-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • A composite guidance scheme is proposed for air-to-ground anti-tank missiles launched from an airborne platform. Long-range anti-tank missiles usually use a fiber optic line (FOL) for the datalink between an operator and the missile to obtain real-time target information and to command the missile. Also, impact angle control is used to maximize the warhead effectiveness, but it should be carefully implemented due to interference between the launch platform and the FOL. Thus, the proposed guidance scheme takes into account both impact angle and FOL constraints. Under system lag and acceleration limits, a selection method of guidance gains and calculation logic of the maximum achievable impact angle are proposed for a guideline of practical implementation. The performance of the proposed guidance scheme is investigated by nonlinear simulations with various engagement conditions.

Review on Airbreathing Propulsion Technology for Missile Application (유도탄용 공기흡입식 추진기관 기술분석)

  • 임진식;최민수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.73-82
    • /
    • 2001
  • Technical status and prospect of the subsonic airbreathing propulsion system composed of jet engine for missile application are described herein, including analysis of some present airbreathing missiles. Comprehension on this can be applicable both to know deeply about the same type missiles and to get some basic idea of unmanned air vehicle's and light aircraft's propulsion system.

  • PDF

Coupled autopilot design for STT missiles (STT 방식의 유도탄에 대한 결합 자동조종장치 설계)

  • 송찬호;김윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.412-417
    • /
    • 1992
  • In this paper, we present a method to design a coupled autopilot for STT missiles which have severe aerodynamic cross-coupling. The aerodynamic model is derived in the meneuver plane and, based on that model, an autopilot scheduled by the normal acceleration and the estimated bank angle is designed. Bank angle is obtained by a simple estimator. With the proposed autopilot, it is shown by computer simulations that induced moments are properly compensated and the performance is supiorior to the conventional autopilot.

  • PDF

Model reference adaptive control of missiles with nonminimum-phase characteristics (비최소 위상 특성을 갖는 유도탄의 기준 모델 적응 제어)

  • 송찬호;김승환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.418-423
    • /
    • 1992
  • In this paper, a model reference adaptive control algorithm is applied to the design of the normal acceleration controller for missiles with nonminimum-phase characteristics. The method used in this paper is due to Ohkubo. In this scheme, a feedforward compensator is designed first so that the extended system becomes minimum-phase and after that an adaptive control algorithms is designed for the extended system. The feedforwrd compensator is obtained by solving the robust stabilization problem. It is shown that the performance of the designed controller is satisfied via computer simulation.

  • PDF

Robust Missile Autopilot Design using Dynamic Inversion and PI Control (Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계)

  • Cho, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

Composite Guidance Law for Impact Angle Control of Passive Homing Missiles (수동 호밍 유도탄의 충돌각 제어를 위한 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea;Kim, Youn-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • In this paper, based on the characteristics of proportional navigation, a composite guidance law is proposed for impact angle control of passive homing missiles maintaining the lock-on condition of the seeker. The proposed law is composed of two guidance commands: the first command is to keep the look angle constant after converging to the specific look angle of the seeker, and the second is to impact the target with terminal angle constraint and is implemented after satisfying the specific line of sight(LOS) angle. Because the proposed law considers the seeker's filed-of-view(FOV) and acceleration limits simultaneously and requires neither time-to-go estimation nor relative range information, it can be easily applied to passive homing missiles. The performance and characteristics of the proposed law are investigated through nonlinear simulations with various engagement conditions.

Computation Algorithm for Dynamic Launch Zone of Air-to-Air Missiles (공대공 유도탄의 동적발사영역(DLZ) 산출 알고리듬)

  • Park, Sang-Sup;Kim, Do-Wan;Hong, Ju-Hyeon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.762-772
    • /
    • 2014
  • A weapon control algorithm equipped on a fighter is closely related to the mission accomplishment and fighter survivability during engagement. The weapon control algorithm typically provides a pilot the dynamic launch zone(DLZ), the target shoot-down range of air-to-air missiles, in the head-up display(HUD). DLZ is produced by an engagement range computation algorithm. In this paper, the components of DLZ for AIM-9 and AIM-120 air-to-air missiles are introduced. The real-time computation algorithm for DLZ based on the pseudo 6-DOF program is then addressed The operational aspects of DLZ algorithm for the air-to-air missiles to various engagement scenarios is investigated vis simulations.

A Linear Approximation Model for an Asset-based Weapon Target Assignment Problem (자산기반 무기할당 문제의 선형 근사 모형)

  • Jang, Jun-Gun;Kim, Kyeongtaek;Choi, Bong-Wan;Suh, Jae Joon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.108-116
    • /
    • 2015
  • A missile defense system is composed of radars detecting incoming missiles aiming at defense assets, command control units making the decisions on weapon target assignment, and artillery batteries firing of defensive weapons to the incoming missiles. Although, the technology behind the development of radars and weapons is very important, effective assignment of the weapons against missile threats is much more crucial. When incoming missile targets toward valuable assets in the defense area are detected, the asset-based weapon target assignment model addresses the issue of weapon assignment to these missiles so as to maximize the total value of surviving assets threatened by them. In this paper, we present a model for an asset-based weapon assignment problem with shoot-look-shoot engagement policy and fixed set-up time between each anti-missile launch from each defense unit. Then, we show detailed linear approximation process for nonlinear portions of the model and propose final linear approximation model. After that, the proposed model is applied to several ballistic missile defense scenarios. In each defense scenario, the number of incoming missiles, the speed and the position of each missile, the number of defense artillery battery, the number of anti-missile in each artillery battery, single shot kill probability of each weapon to each target, value of assets, the air defense coverage are given. After running lpSolveAPI package of R language with the given data in each scenario in a personal computer, we summarize its weapon target assignment results specified with launch order time for each artillery battery. We also show computer processing time to get the result for each scenario.

New Parametric Affine Modeling and Control for Skid-to-Turn Missiles (STT(Skid-to-Turn)미사일의 매개변수화 어파인 모델링 및 제어)

  • Chwa, Dong-Kyoung;Park, Jin-Young;Kim, Jinho;Song, Chan-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.727-731
    • /
    • 2000
  • This paper presents a new practical autopilot design approach to acceleration control for tail-controlled STT(Skid-to-Turn) missiles. The approach is novel in that the proposed parametric affine missile model adopts acceleration as th controlled output and considers the couplings between the forces as well as the moments and control fin deflections. The aerodynamic coefficients in the proposed model are expressed in a closed form with fittable parameters over the whole operating range. The parameters are fitted from aerodynamic coefficient look-up tables by the function approximation technique which is based on the combination of local parametric models through curve fitting using the corresponding influence functions. In this paper in order to employ the results of parametric affine modeling in the autopilot controller design we derived a parametric affine missile model and designed a feedback linearizing controller for the obtained model. Stability analysis for the overall closed loop sys-tem is provided considering the uncertainties arising from approximation errors. the validity of the proposed modeling and control approach is demonstrated through simulations for an STT missile.

  • PDF

Aerodynamic Simulation of Air-Launched Missiles from a Complete Helicopter (헬리콥터 전기체에서 발사되는 유도무기 공력 모사)

  • Lee, Hee-Dong;Kwon, Oh-Joon;Lee, Bum-Seok;Noh, Kyung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1097-1106
    • /
    • 2011
  • Unsteady numerical analysis was performed to simulate air-launched missiles from a complete helicopter in hover by using an unstructured overset mesh flow solver coupled with a module of six degree-of-freedom motion of equations. The unsteady computations have been performed to obtain flow fields around the complete helicopter including main rotor, tail rotor, and fuselage equipped with multiple missiles, and six-DOF simulation has been performed to predict the behavior of the air-launched missile. The effects of the launching position and the missile thrust on the trajectory of the missile were investigated as well as the aerodynamic interference of the air-launched missile under the unsteady downwash produced by main rotor.