• Title/Summary/Keyword: mirrors

Search Result 489, Processing Time 0.035 seconds

Fabrication of Low Reflectance Optical Fiber Mirrors (저 반사율을 가진 광섬유 거울의 제작)

  • Park, Jae-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 1998
  • Low reflectance optical fiber mirrors in the continuous length of the single mode fiber were fabricated using mechanical splices and pieces of fiber coated with $TiO_{2}$ dielectric film at the cleaved end. When fiber mirrors of refelctance of about 1% were produced, the insertion loss ranged from 0.055dB to 0.3dB and the average insertion loss was 0.15 dB. These mirrors could be produced easy in the field.

  • PDF

Fiber Brags Grating Fabrication using Interferometer with Phase Mask (위상 마스크 간섭계를 이용한 광섬유 격자 제작)

  • 유계준;이호준;김병규;김선관;이원준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.194-195
    • /
    • 2001
  • We fabricated fiber bragg gratings using interferometric method with Phase mask. The interferometer consisted of two plane-parallel mirrors and a phase mask perpendicular to mirrors. The Gratings were written using an Argon-ion laser. The experimental setup could change Bragg wavelength given by the phase mask. (omitted)

  • PDF

Measurement of the Axial Displacement Error of a Segmented Mirror Using a Fizeau Interferometer (피조 간섭계를 이용한 단일 조각거울 광축방향 변위 오차 측정)

  • Ha-Lim, Jang;Jae-Hyuck, Choi;Jae-Bong, Song;Hagyong, Kihm
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • The use of segmented mirrors is one of the ways to make the primary mirror of a spaceborne satellite larger, where several small mirrors are combined into a large monolithic mirror. To align multiple segmented mirrors as one large mirror, there must be no discontinuity in the x, y-axis (tilt) and axial alignment error (piston) between adjacent mirrors. When the tilt and piston are removed, we can collect the light in one direction and get an expected clear image. Therefore, we need a precise wavefront sensor that can measure the alignment error of the segmented mirrors in nm scale. The tilt error can be easily detected by the point spread image of the segmented mirrors, while the piston error is hard to detect because of the absence of apparent features, but makes a downgraded image. In this paper we used an optical testing interferometer such as a Fizeau interferometer, which has various advantages when aligning the segmented mirror on the ground, and focused on measuring the axial displacement error of a segmented mirror as the basic research of measuring the piston errors between adjacent mirrors. First, we calculated the relationship between the axial displacement error of the segmented mirror and the surface defocus error of the interferometer and verified the calculated formula through experiments. Using the experimental results, we analyzed the measurement uncertainty and obtained the limitation of the Fizeau interferometer in detecting axial displacement errors.

Error Compensation Algorithm for Higher Surface Accuracy of Freeform Mirrors Based On the Method of Least Squares

  • Jeong, Byeongjoon;Pak, Soojong;Kim, Sanghyuk;Lee, Kwang Jo;Chang, Seunghyuk;Kim, Geon Hee;Hyun, Sangwon;Jeon, Min Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2015
  • Off-axis reflective optical systems have attractive advantages relative to their on-axis or refractive counterparts, for example, zero chromatic aberration, no obstruction, and a wide field of view. For the efficient operation of off-axis reflective system, the surface accuracy of freeform mirrors should be higher than the order of wavelengths at which the reflective optical systems operate. Especially for applications in shorter wavelength regions, such as visible and ultraviolet, higher surface accuracy of freeform mirrors is required to minimize the light scattering. In this work, we propose the error compensation algorithm (ECA) for the correction of wavefront errors on freeform mirrors. The ECA converts a form error pattern into polynomial expression by fitting a least square method. The error pattern is measured by using an ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.). The measured data are fitted by two fitting models: Sag (Delta Z) data model and form (Z) data model. To evaluate fitting accuracy of these models, we compared the fitted error patterns with the measured error pattern.

  • PDF

Robert H. Koch's Work on Lightweight Medium-Aperture Mirrors

  • Holenstein, Bruce D.;Mitchell, Richard J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.79-84
    • /
    • 2012
  • After a visit by Peter Waddell from the University of Strathclyde, Glasgow, UK in 1991, Robert H. Koch launched a program at the University of Pennsylvania to build lightweight pneumatic membrane mirrors, initially for balloon flight observations where weight is at a premium. Mirror cells were fabricated from sizes 0.18 m to 1.77 m, and experiments conducted to characterize the mirror figure and stability. Most of the work stopped after Prof. Koch's retirement in 1996 until 2006 when the authors expressed an interest in building an array of medium-aperture portable telescopes. The program restarted in earnest at Gravic, Inc. in Malvern, PA in 2008 with Koch using his extensive observational astronomy experience to guide the fabrication of a fully operational 1.07 m membrane mirror telescope with an optical tube assembly weighing under 45 Kg. Residual wavefront aberrations remediation resulted in Koch and the authors investigating membrane tensioning techniques with different cell designs, active secondary wavefront correction, photometric algorithms for aberrated images, and the use of additional lightweight mirror substrates from the Alt-Az Initiative Group, such as foamed glass. The best result for the lightweight mirrors was a point spread function spot size of several arc seconds. A lightweight 1.6 m cast aluminum cell alt-az telescope was subsequently designed by Koch and the authors for prime focus use.

Accuracy Assessment for Measuring Surface Figures of Large Aspheric Mirrors

  • Kim, Young-Soo;Ahn, Ki-Beom;Park, Kwi-Jong;Moon, Il-Kweon;Yang, Ho-Soon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.178-183
    • /
    • 2009
  • At the time that the Keck-I 10m telescope was constructed in 1993, the era of Very Large Telescopes (VLTs) was opened. Now thirteen VLTs are in operation, and the largest of the monolithic mirrors is 8.4 m in diameter. Such monolithic mirrors are mostly aspheric and require high accuracies on the surface figures, reaching up to the diffraction limit. At present, next generation telescopes, Giant telescopes, are being developed. One is the GMT (Giant Magellan Telescope) whose size is 25.4 m in diameter. The primary mirror consists of seven segments figuring elliptical shapes on the surface. The surrounding six segments are off-axis and the edges are steep, as the fast focal ratio is adopted. It means that testing of the mirrors is a challenging task. In this paper, testing methods for the GMT primary mirror are reviewed, and accuracy of measuring devices is assessed. Results and discussions follow.

LABORATORY EXPERIMENTS OF OFF-AXIS MIRROR OPTICS OF ALUMINUM FOR SPACE INFRARED MISSIONS

  • Oseki, Shinji;Oyabu, Shinki;Ishihara, Daisuke;Enya, Keigo;Haze, Kanae;Kotani, Takayuki;Kaneda, Hidehiro;Nishiyama, Miho;Abe, Lyu;Yamamuro, Tomoyasu
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.359-361
    • /
    • 2017
  • We report our research on aluminum mirror optics for future infrared astronomical satellites. For space infrared missions, cooling the whole instrument is crucial to suppress the infrared background and detector noise. In this aspect, aluminum is appropriate for cryogenic optics, because the same material can be used for the whole structure of the instrument including optical components thanks to its excellent machinability, which helps to mitigate optical misalignment at low temperatures. We have fabricated aluminum mirrors with ultra-precision machining and measured the wave front errors (WFEs) of the mirrors with a Fizeau interferometer. Based on the power spectral densities of the WFEs, we confirmed that the surface accuracy of all the mirrors satisfied the requirements for the SPICA Coronagraph Instrument. We then integrated the mirrors into an optical system, and examined the image quality of the system with an optical laser. As a result, the total WFE is estimated to be 33 nm (rms) from the Strehl ratio. This is consistent with the WFEs estimated from the measurement of the individual mirrors.

A Study on Manufacturing Technique and Alloy Characteristics of Bronze Mirrors from Jeollanam-do Region in the Three Kingdoms Period (전남지역 출토 삼국시대 청동거울의 합금 특성과 제작 방법 고찰)

  • Lee, Eun Ji
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.767-777
    • /
    • 2021
  • This study analyzed the microstructures and chemical composition of three samples of bronze mirrors excavated in the Jeollanam-do region, particularly Goheung and Damyang. Under x-ray irradiation, the analysis results confirmed the broken parts and pores caused by cracks, casting, and corrosion. Major and minor elemental analysis were performed on three mirrors by Scanning electron microscopy (SEM) with Energy dispersive x-ray spectrometry (EDS) and Inductively coupled plasma mass spe ctrome try (ICP-MS). The re sult shows that the bronze mirrors containe d Cu-Sn-Pb alloys. Alpha phase and eutectic phase were observed in the microstructure, confirming that the casting was performed without additional heat treatment. Notably, Three bronze mirrors were made early Three Kingdoms period in Korea.

Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors (Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정)

  • 김의중;송승훈;김민기;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

Orthogonality Measurement of Square Plane Mirrors for Laser Interferometry (레이저 간섭계의 직각 평면거울에 대한 직각도 오차 측정)

  • 김태호;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.169-179
    • /
    • 1998
  • Plane mirror type laser interferometers are popularly being used in many modern ultraprecision machines, as they can perform simultaneous measurements of multiple axis positions with nanometer resolution capabilities. One important issue in this application of laser interferometers is to provide a good level of alignment between the reflecting mirrors and the laser beams so that measurement errors due to undesirable coupling effects can be avoided in multiple axis measurements In this investigation, a thorough metrological analysis is given to develop an suitable mathematical model for a precision x-y stage in which the orthogonality misalignment between the reflecting mirrors significantly affects overall x-y mea-surement results. Then a noble calibration method is suggested in which two-dimensional displacement sensors of moire gratings of concentric circles are used to realize the reversal principle of orthogonality evaluation in situ. Finally, actual experimental results are discussed to verify that the suggested method can effectively calibrate the orthogonality error with an uncertainty of 0.2667 arcsec.

  • PDF