• Title/Summary/Keyword: mining waste sites

Search Result 19, Processing Time 0.023 seconds

Conceptual Design of a Cover System for the Degmay Uranium Tailings Site (Degmay 우라늄광산 폐기물 부지 복원을 위한 복토층 개념설계)

  • Saidov, Vaysidin;Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.189-200
    • /
    • 2016
  • The Republic of Tajikistan has ten former uranium mining sites. The total volume of all tailings is approximately 55 million tonnes, and the covered area is more than 200 hectares. The safe management of legacy uranium mining and tailing sites has become an issue of concern. Depending on the performance requirements and site-specific conditions (location in an arid, semiarid or humid region), a cover system for uranium tailings sites could be constructed using several material layers using both natural and man-made materials. The purpose of this study is to find a feasible cost-effective cover system design for the Degmay uranium tailings site which could provide a long period (100 years) of protection. The HELP computer code was used in the evaluation of potential Degmay cover system designs. As a result of this study, a cover system with 70 cm thick percolation layer, 30 cm thick drainage layer, geomembrane liner and 60 cm thick barrier soil layer is recommended because it minimizes cover thickness and would be the most cost-effective design.

Spatial and Temporal Analysis of Land-use Changes Associated with Past Mining in the Kitakyushu District, Japan

  • Rhee, Sungsu;Ling, Marisa Mei;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.40-49
    • /
    • 2013
  • In the beginning of $20^{th}$ century, the coal mining industry had an important role in Japan at which two-thirds of the coal product came from the Kitakyushu-Chikuho District (KCD). As a consequence of mining activities, land-use condition in this district showed notable changes. This paper presented a study of land-use changes in coal mining area by characterizing land-use pattern transition over the last 100 years. In order to carry out the rigorous analysis of land-use, a series of land-use maps over the last 100 years was developed using geographic information systems (GIS). The historic topographic map and another available old data were used to investigate the long-term changes of land-use associated with past mining within the GIS platform. The results showed that the utilization of a series of developed land-use maps successfully indicated the difference of land-use pattern in the KCD before and after the peak of mining activities. The general findings from land-use analysis described that forest and farm lands were lost and turned into abandoned sites in the last 100 years.

Snow Tunnelling Project at the South Pole (남극 극지점 기지에서의 얼음 터널 프로젝트)

  • 지왕률
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • The United States Antarctic program (USAP) through its principal Support Contractor Raytheon polar Services Co. (RPSC), has recently finished a 3 years projects, almost 936m length of underground utility tunnels at Amundsen-Scott station. It accommodates the piping that conveys fresh water from current well sites, as well as waste water to repositories in abandoned wells. The under snow tunnels allow year-round access for system operations and maintenance.

Current Occurrence and Heavy Metal Contamination Assessment of Seepage from Mine Waste Dumping Sites in Korea (국내 광산폐기물 적치장 침출수 발생 현황 및 중금속 오염도 평가)

  • Park, Chang Koo;Kim, Jeong Wook;Jung, Myung Chae;Park, Hyun Sung;Kim, Dong Kwan;Oh, Youn Soo
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.588-595
    • /
    • 2018
  • This study has focused on evaluation of heavy metal contamination in seepage from 23 mine waste dumping sites in Korea. Seepage samples from the sites were taken and analyzed for heavy metals. The maximum levels (mg/L) in the samples were Al 53.98, As 16.19, Cd 1.15 Cu 37.30, Fe 28.64, Mn 39.00, Ni 0.097, Pb 0.750, and Zn 80.18. Among the sites, six mines were selected as continuous monitoring sites. As results of three months' monitoring of the sites, over the water guidelines for As, Cd, Cu, Fe, Mn, Zn and Al in seepage samples were found at two abandoned Au-Ag mines, Cd, Mn, Zn and Al at two Pb-Zn mines, and As, Fe and Mn at two other Fe-W mines. Therefore, those six mines need continuous monitoring on contamination assessment of seepage due to mining activities.

Experimental Studies on Dissolution Characteristics of a Heavy Metal(As) in Mining Waste (광산매립지에서 중금속(As)의 용출 특성에 관한 실험적 연구)

  • Han, Choon;Seo, Myoung-Jo;Yoon, Do-Young;Choi, Sang-Il;Lee, Hwa-Young;Kim, Sung-Kyu;Oh, Jong-Kee
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • This study investigates the contamination mechanism of soil by drainages including acid rains around mining waste sites, and suggests the quantitative methods of prevention against soil contaminations and its alternatives. For these purposes, the dissolution of arsenic in soils, which is one of toxic heavy metals, has been examined experimentally using the artificial acidic solution. Also, in order to prevent dissolution of arsenic by acid rain, the effects of limestone for the neutrality method on the soil were investigated. The arsenic in soil specimen was dissolved by strong acidic solution below pH1.0. The maximum amount of dissolved arsenic increased with decreasing pH value. Furthermore, it was found very effective to use limestones for the neutrality method. The neutralization of limestones in acidic solution was found to follow the equation of chemical reaction-controlling formulation in unreacted-core models.

  • PDF

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

Fly Ash Application for Reduction of Acid Mine Drainage (AMD) as Runoff and Leachate Released from Mine Waste Disposal Sites

  • Oh, Se Jin;Moon, Sung Woo;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • Mine wastes such as acid mine drainage (AMD) can cause the detrimental effects on surrounding environment, thereby eventually threatening human health. Main objective of this study was to evaluate the neutralizing effect of fly ash (FA) as a stabilizing material AMD. Field plot was constructed in a coal waste depot which has caused aluminium-whitening adjacent to the stream. Different mixing ratios of FA were applied on a top of the soil, and then the physicochemical properties of runoff and soil were monitored. Constructed plots were as following: control (mine waste only (W)), mine waste + 20% ($w\;w^{-1}$)of FA (WC20M), mine waste + 40% ($w\;w^{-1}$)of FA (WC40M), and WC40M dressed with a fresh soil at the top (WC40MD). Result showed that initial pH of runoff in control was 5.09 while that in WC40M (7.81) was significantly increased. For a plot treated with WC40M, the concentration of Al in runoff was decreased to $0.22mg\;L^{-1}$ compared to the W as the control ($4.85mg\;L^{-1}$). Moreover, the concentration of Fe was also decreased to less than half at the WC40M compared to the control. Application of FA can be useful for neutralizing AMD and possibly minimizing adverse effect of AMD in mining area.

Priority Assessment of Leachate Management of Reclaimed Mine Waste Dump Sites (광산폐기물 적치장 침출수의 사후관리 우선순위 평가)

  • Park, Chang Koo;Yoon, Kyung Wook;Kim, Jung Wook;Jung, Myung Chae;Lee, Jin Soo;Ji, Won Hyun;Lee, Joon Hak
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.771-779
    • /
    • 2020
  • This study was performed to develop a priority list for post-managements of leachates from 64 mine waste dump sites in Korea. For this, leachate quality, leachate quantity, and other factors were considered as evaluation criteria and the weights of 10 subfactors were calculated using Analytic Hierarchical Process (AHP) based on a survey from 20 experts in the field of mining environment. Calculated weights were 0.769, 0.147 and 0.084 for leachate quality, leachate quantity, and others, respectively, indicating that experts consider leachate quality as most important. Based on this approach, we classified the 64 mine waste dump sites into five grades from Grade I to Grade V. Ten were classified as Grade I, 1 as Grade II, 1 as Grade III, 33 as Grade IV, and 19 as Grade V.

Evaluation of Physical Properties of Liner and Cover Material Crystalline admixture (결정질혼화제를 함유한 광산차수재 물성평가)

  • Cho, Yong-Kwang;Kim, Jin-Sung;Kim, Chun-Sik;Jo, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.227-228
    • /
    • 2021
  • There are various problems caused by environmental pollution around the abandoned mines. In addition, they are exposed to the risk of safety accidents due to sinkholes caused by ground subsidence. Therefore, the ground is stabilized through the filling and construction of abandoned mines using industrial by-products. However, in the case of Backfill Material, secondary pollution caused by acidic drainage and leachate is not suppressed. To solve this problem, the liner and cover material is first installed. Therefore, in this study, the watertightness of the liner and cover material was improved by mixing crystalline admixtures by content.

  • PDF

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.