• 제목/요약/키워드: minimum thickness

검색결과 758건 처리시간 0.036초

광기록 매질로 이용되는 Te계 ART구조의 광학적 해석 (The optical analysis of Te-based ART structure for the optical recording media)

  • 이성준;박태성;정홍배
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권3호
    • /
    • pp.220-224
    • /
    • 1994
  • In this study, we discussed the optical property to find the optimal condition of Te-based antireflection trilayer(ART) structure for a high density optical recording. It was found that the optical property was improved by suggesting the environmental parameters satisfied the optimum condition. As the results, the optimized(.lambda.=8.000${\AA}$.) thickness of the recording layer is 27${\AA}$, and the 1st and 2nd minimum ART conditions of dielectric layers are 1080${\AA}$, 3820${\AA}$, respectively. And the high SNR, the contrast ratio and the sensitivity are achieved by using the ART conditions.

  • PDF

Effect of Thickness on Electrical Properties of PVDF-TrFE (51/49) Copolymer

  • Kim, Joo-Nam;Jeon, Ho-Seung;Han, Hui-Seong;Im, Jong-Hyung;Park, Byung-Eun;Kim, Chul-Ju
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.881-884
    • /
    • 2008
  • In this study, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) in the composition from 51/49, was deposited on platinum for a metal-ferroelectric-metal structure. From XRD patterns, the 70 nm- and 140 nm-thick PVDF-TrFE films showed the intensity peak of near $20^{\circ}$ connected to a ferroelectric phase. Moreover, the thicker film indicated the higher intensity than thinner one. The difference of the remanent polarization (2Pr) at 0 V is decreased gradually from 10.19 to $5.7{\mu}C/cm^2$ as the thickness decrease from 140 to 70 nm. However, when the thickness decreased to 50 nm, the 2Pr rapidly drop to $1.6{\mu}C/cm^2$ so the minimum critical thickness might be at least 70 nm for device. Both different thickness films, 70 and 140 nm, indicated that the characteristic of current density-voltage was measured for $10^{-6}{\sim}10^{-7}A/cm^2$ below 15 V and the thicker film maintained relatively lower current density than thinner one. From these results, we can expect that the electrical properties for the devices particularly ferroelectric thin film transistor using PVDF-TrFE copolymer were able to be on the trade-off relationship between the remanent polarization with the bias voltage and the leakage current.

열성형 공정에서 발생하는 필름의 잔류응력 및 스프링 백에 관한 연구 (A study on the residual stress and spring back of thermoformed films)

  • 박두용;박동현;이호상
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2022
  • Thermoforming is a plastic manufacturing process that applies a force to stretch a film of heated thermoplastic material over an engineered mold to create a 3-dimensional shape. After forming, the shaped part can then be trimmed and finished to specification to meet an end-user's requirements. The process and thermoplastic materials are extremely versatile and can be utilized to manufacture parts for a very wide range of applications. In this study, based on K-BKZ nonlinear viscoelastic model, thermoforming process analysis was performed for an interior room-lamp. The predicted thickness was minimum at the corner of a molded film, and maximum at the center of the bottom. By using the Taguchi method of design of experiments, the effects of process conditions on residual stresses were investigated. The dominant factors were the liner thickness and the film heating time. As the thickness of the liner increased, the residual stress decreased. And it was found that the residual stress decreased significantly when the film heating temperature was higher than the glass transition temperature. A thermoforming mold and a trimming mold were manufactured, and the spring back was investigated through experiments. The dominant factors were film heating time, liner thickness, and lower mold temperature. As the film heating time and liner thickness increased, the spring back decreased. In addition, it was found that the spring back decreased as the lower mold temperature increased.

두께 불균일 압전 초음파 트랜스듀서의 형태에 따른 특성변화 해석 (Characteristics Variation Analysis by Shape of Piezoelectric Ultrasonic Transducer with Non-Uniform Thickness)

  • 김동현;김정순;김무준;하강렬
    • 한국음향학회지
    • /
    • 제27권6호
    • /
    • pp.271-278
    • /
    • 2008
  • 압전판의 길이나 폭에 따라 두께가 변화하는 압전 세라믹을 사용하여 광대역 특성을 구현하는 초음파 트랜스듀서에 대하여 압전진동자의 측면에서 본 형태에 따른 전기-음향적 특성해석을 이론적으로 수행하였다. 압전진동자의 길이방향에 따른 두께 변화를 지수함수의 조합으로 표현하고 이 함수를 이용하여 압전진동자의 전기단자에서 본 자유 어드미턴스 및 파워전달함수에 대한 식을 도출하였다. 대표적인 PZT압전 세라믹을 예로 들어 압전 진동자의 측면 형태변화에 따른 비 대역폭을 고찰해본 결과 넓은 대역폭를 얻기 위한 최적의 형태가 존재함을 알 수 있었으며, 압전진동자의 최대두께에 대한 최소두께 비가 자아짐에 따라 대역폭은 100%이상까지도 넓어질 수 있으나 파워전달함수는 반대로 감소하는 경향을 확인할 수 있었다. 또 압전진동자의 길이가 길어질수록 전달함수의 크기는 증가하나 광대역 특성을 갖는 압전진동자의 형태는 매우 한정적이 됨을 확인할 수 있었으며 이는 고효율의 광대역 초음파 트렌스듀서 제작에 있어서는 정밀한 가공이 요구됨을 확인할 수 있었다.

유도초음파를 이용한 판 구조물 CT 영상화 기법 (Investigation of CT Imaging Technique Using Guided Wave)

  • 윤현우;강토;김학준;송성진;신호상
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.11-18
    • /
    • 2011
  • 유도초음파는 구조물의 장거리 탐상에 널리 사용되고 있으며 탐촉자의 중심주파수와 판의 두께에 따라 유도 초음파의 군속도가 바뀌는 어려움으로 인하여 최근에 많은 연구자들에 의해 유도초음파를 이용한 판과 같은 구조물 진단에 토모그래피 영상화기법에 관심을 기울이고 있다. 기존에 개발된 영상화 기법으로는 Delay and Sum영상화 기법이 있으며, 수 년간 판 구조물 영상화 기법의 알고리즘으로 이용되었다. MVDR(Minimum Variance Distortionless Response) 영상화 기법은 초음파의 산란특성을 고려한 영상화 기법으로써, 빔의 특성이 영상화 알고리즘에 적용되어 Delay and Sum 영상화 기법보다 향상된 영상을 판구조물에 존재하는 홀 결함 영상을 통해 비교 분석하였다.

취성재료의 펀칭가공을 위한 충격 장치 개발 및 펀칭기구 해석 (Development of Experimental Setup for Impact Punching in Brittle Materials and Analysis of Punching Mechanism)

  • 신형섭;김진한;오상엽
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.629-636
    • /
    • 2001
  • In order to investigate the possibility of impact punching in brittle materials, an experimental setup was developed. In the setup, a long bar as a punch was used to apply the impact load to the specimen plate and measure the applied impact force during the impact punching process. Impact punching tests with various shape of punches were performed in soda-lime glass and silicon wafer under a different level of contact pressure. The damage appearance after the impact punching was examined according to the applied contact pressure. The minimum contact pressure required for a complete punching in glass specimens without development of radial cracks around the punched hole was sought at each condition. The minimum contact pressure increased with increasing the thickness of specimens and decreasing the end radius of punches. The profile of impact forces was measured during the impact punching experiment, and it could explain well the behavior of the punching process in brittle material plates. The measured impact force increased with increasing the contact pressure applied to the plates.

광열변위의 최소위상을 이용한 열확산계열수 측정 (Measurement of Thermal Diffusivity Using Minimum Phase Based on the Photothermal Displacement)

  • 이은호;이광재;전필수;유재석;김기현
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.296-304
    • /
    • 2001
  • A new method of measuring the thermal diffusivity of solid material at room temperature using photothermal displacement is proposed. The influence of the parameters, such as radius and modulation frequency of the pump beam and the sample thickness, was studied. From the minimum position of phase of measured deflection with respect to the pump beam, the thermal diffusivity of the materials can be obtained. The position where phase has the minimum value is determined using multiparameter least-square regression fitting. The experimental values for different samples obtained by applying the new method are in good agreement with the literature values.

콘크리트 표면의 유체이동특성과 최소피복두께 결정을 위한 제안 (Fluid Transport Properties of Skin Concrete and New Suggestion to Determine Minimum Cover Concrete)

  • 이창수;윤인석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.543-546
    • /
    • 2002
  • This paper discussed micro - structure of skin concrete to understand transport properties from surface and seek thickness from surface which is seriously influenced on durability. Concrete at nearer surface has high porosity relative to inner concrete. The porosity of concrete and ISAT value at region from surface to 20 mm depth is decreased with depth. On the other hand, according to the result of ASTM C 1202 with specimen thickness, critical depth which affects fast ionic penetration through interfacial transition zone (ITZ) equals 35mm and the critical depth would be directly influenced by the effects of ITZ on chloride diffusion unrelated with W/C ratio.

  • PDF

이층구조의 전반로를 갖는 단성표면파의 온도특성 (Temperature Characteristics of Elastic Layer Mode Propagating on Piezoelectric Crystal)

  • 김완상
    • 대한전자공학회논문지
    • /
    • 제10권6호
    • /
    • pp.56-61
    • /
    • 1973
  • 압전 결정 LiNbO3에서 탄성표면파(Rayleigh 표면파)의 온도계수가 가장 작은 131° 로테이트 Y캇트의 전반로에 Ag와 Pd를 증착하여 증착막의 두께에 따른 위상속도의 변화와 위상속도의 온도계수의 변화를 수치해석방법에 의하여 계산하였다. 계산한 결과 Ag의 경우는 증착막의 두께가 증가함에 따라 온도계수가 급격히 증가하나 Pd의 경우는 증가와 감소의 불규칙성을 보이며 wh=9000에서 -36×10 /℃의 위상속도의 온도계수의 최소치를 얻었다.

  • PDF

수소가스분위기하에서의 SnO2 박막의 전기적 거동 (Electrical Behaviors of SnO2 Thin Films in Hydrogen Atmosphere)

  • 김광호;박희찬
    • 한국세라믹학회지
    • /
    • 제25권4호
    • /
    • pp.341-348
    • /
    • 1988
  • Thin films of tin-oxide were prepared by chemical vapor deposition technique using the direct of SnCl4. Resistivity and carrier concentration of deposited SnO2 thin film were measured by 4-point probe method and Hall effect measurement. The results showed the remarkable dependence of electrical properties on the deposition temperature. As the deposition temperature increased, resistivity of deposited film initially decreased to a minimum value of ~10-3$\Omega$cm at 50$0^{\circ}C$, and then rapidly increased to ~10$\Omega$cm at $700^{\circ}C$. Electrical conductance of these films was measured in exposure to H2 gas. It was found that gas sensitivity was affected combination of film thickness and intrinsic resistivity of deposited film. Gas sensitivity increased with decrease of film thickness. Fairly high sensitivity to H2 gas was obtained for the film deposited at $700^{\circ}C$. Optimum operation temperature of sensing was 30$0^{\circ}C$ for H2 gas.

  • PDF