• Title/Summary/Keyword: minimum steel ratio

Search Result 125, Processing Time 0.021 seconds

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

A Study on the Ultrasonic Inspection Method in High Attenuation Welds using Minimization-Polarity Threshold Algorithm (최소극 문턱치 알고리즘을 이용한 고감쇠 용접부에서 초음파 검사방법에 관한 연구)

  • Koo, Kil-Mo;Park, Chi-Seung;Choi, Jong-Ho;Ko, Duck-Young
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.30-36
    • /
    • 2000
  • In this paper, an ultrasonic testing method for inspection of high attenuation welding area using the minimum Polarity threshold algorithm which combines the minimum amplitude selection algorithm and polarity threshold algorithm is suggested to increase the signal to noise ratio of the flow signal. In order to confirm the usefulness of the suggested algorithm, experiments were performed using four probes and standard specimens following the ASME Xl Code. As a result, scattering signals were observed from the SE(safe end) and CCSS (centrifugal casting stainless steel) materials due to the microstructural characteristical, and the detectability was reduced due to the highly attenuated signal from the weldment area, but it was conformed that using the suggested algorithm, the signal to noise ratio increased about 2.6.

  • PDF

Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups

  • Qissab, Musab Aied;Salman, Mohammed Munqith
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.347-358
    • /
    • 2018
  • The main aim of this research was to investigate the shear strength of non-prismatic steel fiber reinforced concrete beams under monotonic loading considering different parameters. Experimental program included tests on fifteen non-prismatic reinforced concrete beams divided into three groups. For the first and the second groups, different parameters were taken into consideration which are: steel fibers content, shear span to minimum depth ratio ($a/d_{min}$) and tapering angle (${\alpha}$). The third group was designed mainly to optimize the geometry of the non-prismatic concrete beams with the same concrete volume while the steel fiber ratio and the shear span were left constant in this group. The presence of steel fibers in concrete led to an increase in the load-carrying capacity in a range of 10.25%-103%. Also, the energy absorption capacity was increased due to the addition of steel fibers in a range of 18.17%-993.18% and the failure mode was changed from brittle to ductile. Tapering angle had a clear effect on the shear strength of test specimens. The increase in tapering angle from ($7^{\circ}$) to ($12^{\circ}$) caused an increase in the ultimate shear capacity for the test specimens. The maximum increase in ultimate load was 45.49%. The addition of steel fibers had a significant impact on the post-cracking behavior of the test specimens. Empirical equation for shear strength prediction at cracking limit state was proposed. The predicted cracking shear strength was in good agreement with the experimental findings.

A Study on the Characteristics of Ceramic Ball Bearing (세라믹 볼베어링의 특성해석에 관한 연구)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

The influence of magnetic field on the alignment of steel fiber in fresh cementitious composites

  • Li, Hui;Li, Lu;Li, Lin;Zhou, Jian;Mu, Ru;Xu, Mingfeng
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.323-337
    • /
    • 2022
  • This paper proposes a numerical model to simulate the rotational behavior of steel fiber in fresh cement-based materials in the presence of a magnetic field. The results indicate that as the aspect ratio of fiber increases, the required minimum magnetic field intensity to make fiber rotate in viscous fluid increases. The optimal magnetic field intensity is 0.03 T for aligning steel fiber in fresh cement-based materials to ensure that the applying time of the magnetic field can be conducted concurrently with the vibrating process to increase the aligning efficiency. The orientation factor of steel fiber in cement mortar can exceed 0.85 after aligning by 0.03 T of the uniform magnetic field. When the initial angle of the fiber to the magnetic field direction is less than 10°, the magnetic field less than 0.03 T cannot make the fiber overcome the yield stress of fluid to rotate. The coarse aggregate in steel fiber-reinforced concrete is detrimental to the rotation and alignment of the steel fiber. But the orientation factor of ASFRC under the 0.03T of the magnetic field can also exceed 0.8, while the orientation factor of SFRC without magnetic field application is around 0.6.

Ductility of Circular Hollow Reinforced Concrete Piers Internally Confined by a Steel Tube (내부 강관 보강 원형 R.C 기둥의 연성 거동 특성)

  • Han, Taek-Hee;Han, Sang-Yun;Han, Keum-Ho;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.127-137
    • /
    • 2003
  • In locations where the cost of concrete is relatively high, or in situations where the weight of concrete members is to be kept to a minimum, it may be economical to use hollow R.C. members. The ductility of circular hollow R.C. columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. In this study, moment-curvature analyses are conducted with Mander's confined concrete stress-strain relationship. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.301-313
    • /
    • 2017
  • This paper presents the fibre-matrix interfacial properties of hooked end steel fibres embedded in ultra-high performance mortars with various water/binder (W/B) ratios. The principle objective was to improve bond behaviour in terms of bond strength by reducing the (W/B) ratio to a minimum. Results show that a decrease in W/B ratio has a significant effect on the bond-slip behaviour of both types of 3D fibres, especially when the W/B ratio was reduced from 0.25 to 0.15. Furthermore, the optimization in maximizing pullout load and total pullout work is found to be more prominent for the 3D fibres with a larger diameter than for fibres with a smaller diameter. On the contrary, increasing the embedded length of the 3D fibres did not result in an improvement on the maximum pullout load, but increase in the total pullout work.

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

The Optimization of NDT Method for Real Time X-ray Imaging (X선 실시간 영상장치를 이용한 비파괴시험 조건 최적화 연구)

  • Na, Sung-Youb;Choi, Yong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.19-28
    • /
    • 1996
  • This study has investigated the optimization of NDT method and the minimum detectable defect size for complex structures such as the solid propellant rocket motor using real time X-ray imaging system. Test specimens were made of steel plates with various defect size, and installed with proper thickness for which solid propellant, rubber, and case converted to the steel equivalent thickness according to the radiographic equivalent theory. As the results, this examination obtained optimum magnification and X-ray energy, dose rate according to steel equivalent thickness, also, obtained the relationship between minimum detectable defect size and the ratio(defect depot/object thickness). Thus, this simulated test is the preliminary procedure before performing NDT for real objects, and is possibly applied for NDT of other complex structures.

  • PDF

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.