• Title/Summary/Keyword: minimum relative humidity

Search Result 155, Processing Time 0.031 seconds

Study on the Long-term Change of Urban Climate in Daegu (대구의 장기적 도시기후 변동에 관한 연구)

  • 김해동
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.697-704
    • /
    • 2003
  • Through data analysis using the meteorological data during 40 years(1961∼2000) for 2 stations(Daegu and Chupungnyong), we studied the present condition and long-term trends in urban climatic environments of Daegu. It was found that there was about 1.5$^{\circ}C$ rise in annual mean temperature of Daegu from 1961 to 2000. On the other hand, that of Chupungnyung was not more than 0.4$^{\circ}C$ for the same period. The regional disparity in temperature changes has been caused by the difference of urban effects on climate between two regions. In particular, the urban warming appears more significant in winter season. There was about 3$^{\circ}C$ rise in annual mean daily minimum temperature of winter season(Dec.∼Feb.) in Daegu. As the result, the number of winter days continuously decreased from 115 days(1961) to 75 days(2000). The long-term trends of relative humidity were also studied to exame the effects of urbanization on climate in Daegu. It was found that there was about 7% decrease in relative humidity of Daegu during past 40 years(1961∼2000). On the other side, the decrease of Chupungnyung was not more than 2% for the same period. The long-term trends of the other climatic factors(fog days, tropical night days, etc) were also studied in this study.

Fuzzy Inference Based Design for Durability of Reinforced Concrete Structure in Chloride-Induced Corrosion Environment

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.157-166
    • /
    • 2005
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and water-cement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.

The Relocation Effect of Observation Station on the Homogeneity of Seasonal Mean of Diurnal Temperature Range (기상관측소의 이전이 계절평균 일교차의 균질성에 미치는 영향)

  • Kim, Ji-Hyun;Suh, Myoung-Seok;Hong, Soon-Hee
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.437-449
    • /
    • 2010
  • The relocation effect of observation station (REOS) on the homogeneity of seasonal mean of maximum and minimum temperature, diurnal temperature range (DTR) and relative humidity (RH) was investigated using surface observation data and document file. Twelve stations were selected among the 60 stations which have been operated more than 30 years and relocated over one time. The data from Chunpungryeong station were used as a reference to separate the impacts of station relocation from the effects caused by increased green house gases, urbanization, and others. The REOS was calculated as a difference between REOS of relocated station and REOS of reference station. Although the REOS is clearly dependent on season, meteorological elements, and observing stations, statistically significant impacts are found in many stations, especially the environment of observing station after relocation is greatly changed. As a result, homogeneity of seasonal mean of meteorological elements, especially DTR and RH, is greatly reduced. The results showed that the effect of REOS, along with the effect of urbanization, should be eliminated for the proper estimation of climate change from the analysis of long-term observation data.

The Effects of Drying Conditions on the Germination Properties of Rapeseed (유채종자의 건조조건에 따른 발아특성)

  • Duc, Le Anh;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • This study was performed to determine the effect of drying conditions on the germination properties of rapeseed after seeds were dried under different drying conditions: $40^{\circ}C$, $50^{\circ}C$, or $60^{\circ}C$ in combination with 30%, 45%, or 60% relative humidity. As analytic results, drying conditions had significant effects (P-value < 0.001) and drying temperature was considered as the main factor on the germination properties of rapeseed. When drying temperature increased or relative humidity decreased, the vigor rate and germination rate decreased, the median germination time increased. The maximum values of vigor rate and germination rate were 90% and 95.44%, and their minimum values were 60.17 and 75%, respectively. To ensure the standard germination rate of 85%. The appropriate drying zone was determined and the drying temperature should be less than $51.0^{\circ}C$, $54.5^{\circ}C$ and $58.7^{\circ}C$ at 30%, 45% and 60% RH, respectively. The values for median germination time varied from 2 to 4 days. The predicted models of germination rate, vigor rate, and median germination time were determined.

Comparison of the Meteorological Factors on the Forestland and Weather Station in the Middle Area of Korea

  • Chae, Hee Mun;Yun, Young Jo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.249-252
    • /
    • 2018
  • Climate is one of most important environmental factors on the forest ecosystem. This study was conducted to analyze the characteristics of meteorological factors in the forest area and weather stations from July 2015 to June 2016 in Cheuncheon and Hongcheon of Kangwon Province in Korea. The HOBO data logger was installed for meteorological analysis in forests area (site 1 and site 2). The meteorological data from the HOBO data logger compared with meteorological data of the weather station. The meteorological data used for the analysis was monthly mean temperature ($^{\circ}C$), monthly mean minimum temperature ($^{\circ}C$), monthly mean maximum average temperature ($^{\circ}C$), and monthly mean relative humidity (%). As a result of this study, the mean temperature ($^{\circ}C$) of forest area was relatively lower than weather station which is the outside the forest area, and the mean maximum temperature ($^{\circ}C$) of weather station was relatively higher than that of forest area. The mean relative humidity (%) was higher in forest area than weather station.

Numerical Prediction on Snowfall Intensity in the Mountainous Coastal Region

  • Choi, Hyo;Lee, Han-Se;Kim, Tae-Kook;Choi, Doo-Sun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.89-94
    • /
    • 2003
  • The formation of a severe snow storm occurred in the mountainous coastal region near Mt. Taegualyang and Kangnung city in the eastern part of Korea was investigate from 0900LST, December 7 through 9, 2002, using MM5 model. As synoptic scale easterly wind induced a great amount of moisture from the East Sea into the inland coastal region and sea-breeze further induced more moisture from the basin toward the top of the mountain side. The lifted moisture toward the mountain top was cooled down along the eastern slope of the mountain and near the mid of the mountain the moisture was much cooled down with relative humidity of 100% under the air temperature below $O^{\circ}C$, resulting in the formation of snow. Relative humidity of 100% generally occurred at the 5km away from the coast toward the inland mountain and the band of 100% RH was parallel to the coastal line. The 100% band coincided with minimum air temperature band and line.

  • PDF

Water Requirement of Twist Peppers in Greenhouse (온실 재배 꽈리고추의 필요수량)

  • 윤용철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.59-66
    • /
    • 2000
  • This study was carried out to investigated the water requirement of twisted sweet peppers which are cultivated in a green house. The meteorological conditions during the experiment period was close to that of normal year except the temperature and relative humidity. The growth status was improved with the increased saturation ratio. The range of the variation of daily water requirement were very large. The peak consumption occurred in the early August. And the higher saturation ratio resulted in higher water requirement. The total water requirement were about 57.180g/d/plant for pot with 100% (P100) of saturation , about 38.700g/d/plant for pot with 80%(P80) of saturation , about 23,720g/d/plant for pot with 60%(P60) of saturation, and about 53, 390g/d/plant for field cultivation in the green house, respectively. The water requirement was correlated with average ambient temperature and growing status, while no significant correlation were found between water requirement and minimum relative humidity or intensity of solar radiation. And the higher correlation was shown as the saturation ratio was increased. The transpiration coefficients of twisted sweet pepper were 378.0g/g for field cultivation in the green house, 363.3g/g for P100, 338.7g for P80 which was the smallest among pot cultivation , and 472.1g/g for P60 , respectively.

  • PDF

The Analysis of Changma Structure using Radiosonde Observational Data from KEOP-2007: Part I. the Assessment of the Radiosonde Data (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석: Part I. 라디오존데 관측 자료 평가 분석)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.213-226
    • /
    • 2009
  • In order to investigate the characteristics of Changma over the Korean peninsula, KEOP-2007 IOP (Intensive Observing Period) was conducted from 15 June 2007 to 15 July 2007. KEOP-2007 IOP is high spatial and temporal radiosonde observations (RAOB) which consisted of three special stations (Munsan, Haenam, and Ieodo) from National Institute of Meteorological Research, five operational stations (Sokcho, Baengnyeongdo, Pohang, Heuksando, and Gosan) from Korea Meteorological Administration (KMA), and two operational stations (Osan and Gwangju) from Korean Air Force (KAF) using four different types of radiosonde sensors. The error statistics of the sensor of radiosonde were investigated using quality control check. The minimum and maximum error frequency appears at the sensor of RS92-SGP and RS1524L respectively. The error frequency of DFM-06 tends to increase below 200 hPa but RS80-15L and RS1524L show vice versa. Especially, the error frequency of RS1524L tends to increase rapidly over 200 hPa. Systematic biases of radiosonde show warm biases in case of temperature and dry biases in case of relative humidity compared with ECMWF (European Center for Medium-Range Weather Forecast) analysis data and precipitable water vapor from GPS. The maximum and minimum values of systematic bias appear at the sensor of DFM-06 and RS92-SGP in case of temperature and RS80-15L and DFM-06 in case of relative humidity. The systematic warm and dry biases at all sensors tend to increase during daytime than nighttime because air temperature around sensor increases from the solar heating during daytime. Systematic biases of radiosonde are affected by the sensor type and the height of the sun but random errors are more correlated with the moisture conditions at each observation station.

UTILIZATION OF ENGINE-WASTE HEAT FOR GRAIN DRYING IN RURAL AREAS

  • Abe, A.;Basunia, M.A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.957-966
    • /
    • 1996
  • An attempt was made to measure the availability of waste heat, released from the cooling system of a small engine, which can be utilized for grain drying. An engine powered flat-bed rough rice dryer was constructed and the performance of the dryer with available engine-waste heat was analyzed for 10 , 20, 30 and 40 cm rough rice bulk depths with a constant dryer base area of 0.81$m^2$/min. The waste heat was sufficient to increase the drying air temperature 7 to 12$^{\circ}C$ at an air flow rate of 8.8 to 5.7㎥/min, while the average ambient temperature and relative humidity were 24$^{\circ}C$ and 70%. The minimum energy requirement was 3.26 MJ/kg of water removed in drying a 40 cm deep grain bed in 14h. A forty to fifty centimeter deep grained seems to be optimum in order to avoid over-drying in the top layers. On the basis of minimum energy requirement (3.26 MJ/kg ) , an estimation was made that the waste heat harvest from an engine of a power range of 1 to 10.5PS can dry about 0.1 to 1 metric on of rough rice from 23% to 15% m.c. (w.b) in 12 h at an average ambient temperature and relative humidity of $25^{\circ}C$ and 80%, respectively. The engine-waste heated grain dryer can be used in the rural areas of non industrialized countries where electricity is not available.

  • PDF

Development of Environmental Control System for High-Quality Shiitake Mushroom (Lentinus edodes (Berk.) Sing.) Production

  • Kwon, Jin-Kyung;Kim, Seung-Hee;Jeon, Jong-Gil;Kang, Youn-Ku;Jang, Kab-Yeol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.342-351
    • /
    • 2018
  • Purpose: Recently, an increasing number of farms have been cultivating shiitake mushrooms using a sawdust substrate and a cooler/heater. In this study, an attempt was made to develop an environmental control system using a heat pump for cultivating high-quality shiitake mushrooms. Methods: An environmental control system, consisting of an air-to-water type heat pump, a thermal storage tank, and a radiator in a variable opening chamber, was designed and fabricated. The system was also installed in the cultivation facility of a farm cultivating shiitake mushrooms so as to compare the proposed control system with a conventional environmental control system using a cooler-condensing unit and an electric hot water boiler. Results: The uniformity of the environment was analyzed through environment measurements taken at several positions inside the cultivation facility. It was determined that the developed environmental control system is able to control the variations in temperature and relative humidity to within 1% and 3%, respectively. In addition, a maximum temperature difference of $30^{\circ}C$ (maximum of $35^{\circ}C$, minimum of $5^{\circ}C$) and a maximum relative humidity difference of 30% (maximum of 90%, minimum of 60%) can be attained within 30 min inside the cultivation facility through the cooling of the heat pump and heating of the radiator in a variable opening chamber. Thus, the developed control system can be used to cultivate high-quality shiitake mushrooms more effectively than a conventional cooler and heater. Conclusions: In comparison with a conventional environmental control system, the developed system decreased the yield of ordinary mushrooms by 65%, and increased that of high-quality mushrooms by 217%. This corresponds to a 16% increase in gross farm income. Consequently, the developed system is expected to improve the income of shiitake mushroom cultivating farms.