• Title/Summary/Keyword: minimizing of corrosion

Search Result 21, Processing Time 0.022 seconds

A Study on the Corrosion Property of Sprinkler Pipe and the Solution (스프링클러 배관의 부식 특성과 대책에 관한 연구)

  • Kim, Dongsung;Cho, Cheol Won;Kim, Byungseon;Lee, Tae Shik
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • This paper investigates the corrosion property of sprinkler pipe and provides the prevention solution. This study examines the property of stainless pipe widely used as sprinkler pipe and performs theoretical studies on the corrosion procedure. It was found that corrosion of the pipes mainly results from deterioration of pipe and wrong installation. The test result is expected to be useful in designing of the pipe system and minimizing of the corrosion.

  • PDF

Study on Corrosion Properties of Additive Manufactured 316L Stainless Steel and Alloy 625 in Seawater

  • Jung, Geun-Su;Park, Yong-Ha;Kim, Dae-Jung;Lim, Chae-Seon
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.258-266
    • /
    • 2019
  • The objective of this study was to evaluate corrosion resistance of additive manufactured 316L stainless steel and alloy 625 powders widely used in corrosion resistance alloys of marine industry in comparison with cast alloys. Directed Energy Deposition (DED) method was used in this work for sample production. DED parameter adjustment was also studied for optimum manufacturing and for minimizing the influence of defects on corrosion property. Additive manufactured alloys showed lower corrosion resistance in seawater compared to cast alloys. The reason for the degradation of anti-corrosion property was speculated to be due to loss of microstructural integrity intrinsic to the additive manufacturing process. Application of heat treatment with various conditions after DED was attempted. The effect of heat treatments was analyzed with a microstructure study. It was found that 316L and alloy 625 produced by the DED process could recover their expected corrosion resistance when heat treated at 1200 ℃.

Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening (동합금의 워터캐비테이션피닝에 의한 내구성과 부식특성 평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Min-Sung
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.184-190
    • /
    • 2012
  • Cu alloy is widely used for marine applications due to its excellent ductility and high resistance for corrosion as wells as cavitation. However, long term exposure of the material to marine environments may result in damages caused by cavitation and corrosion. Water cavitation peening has been introduced in order to improve resistance of Cu alloy to corrosion and cavitation. The technology induces compressive residual stress onto the surface, and thus enhances the fatigue strength and life. In this study, the characteristics of the material were investigated by using water cavitaiton peening technique, and results showed that 2 minutes of water cavitation peening indicated the considerable improvement in hardness. On the other hand, over 10 minutes of water cavitation peening accelerated damages to the surface. In the case of ALBC3, water cavitation peening in the range of 2 to 10 minutes has shown the excellent durability and corrosion resistance while minimizing surface damages.

Minimizing Zinc Consumption In Hot-Dip Galvanizing Lines

  • Bright, Mark;Ellis, Suzanne
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.43-46
    • /
    • 2011
  • Zinc consumption in a continuous galvanizing line is one of the highest operating cost items in the facility and minimizing zinc waste is a key economic objective for any operation. One of the primary sources of excessive loss of zinc is through the formation of top dross and skimmings in the coating pot. It has been reported that the top skimmings, manually removed from the bath, typically consist of more than 80% metallic zinc with the remainder being entrained dross particles ($Fe_2Al_5$) along with some oxides. Depending on the drossing practices and bath management, the composition of the removed top skimmings may contain up to 2 wt% aluminum and 1 wt% iron. On-going research efforts have been aimed at in-house recovery of the metallic zinc from the discarded top skimmings prior to selling to zinc recycling brokers. However, attempting to recover the zinc entrapped in the skimmings is difficult due to the complex nature of the intermetallic dross particles and the quality and volume of the recycled zinc is highly susceptible to fluctuations in processing parameters. As such, an efficient method to extract metallic zinc from top skimmings has been optimized through the use of a specialized thermo-mechanical process enabling a continuous galvanizing facility to conserve zinc usage on-site. Also, through this work, it has been identified that filtration of discrete dross particles has been proven effective at maintaining the cleanliness of the zinc. Future efforts may progress towards expanded utilization of filters in continuous galvanizing.

Influences of Coating Cycles and Composition on the Properties of Dimensionally Stable Anode for Cathodic Protection

  • Yoo, Y.R.;Chang, H.Y.;Take, S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Properties of the anode for cathodic protection need low overvoltage for oxygen evolution and high corrosion resistance. It is well known that DSA (Dimensionally Stable Anode) has been the best anode ever since. DSA is mainly composed of $RuO_2$, $IrO_2$, $ZrO_2$, $Co_2O_3$, and also $Ta_2O_5$, $TiO_2$, $MnO_2$ are added to DSA for better corrosion resistance. The lifetime of DSA for cathodic protection is also one of the very important factors. $RuO_2$, $IrO_2$, $RhO_2$, $ZrO_2$ are well used for life extension, and many researches are focused on life extension by lowering oxygen evolution potential and minimizing dissolution of oxide coatings. This work aims to evaluate the influence of constituents of MMO and coating cycles and $ZrO_2$ coating on the electrochemical properties and lifetime of DSA electrodes. From the results of lifetime assessment in the anodes coated with single component, $RuO_2$ coating was more effective and showed longer lifetime than $IrO_2$ coating. Also, an increased coating cycle and an electrochemically coated $ZrO_2$ could enhance the lifetime of a DSA.

Bioinspired Nanoengineering of Multifunctional Superhydrophobic Surfaces

  • Choi, Chang-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.102-133
    • /
    • 2015
  • Nature, such as plants, insects, and marine animals, uses micro/nano-textured surfaces in their components (e.g., leaves, wings, eyes, legs, and skins) for multiple purposes, such as water-repellency, anti-adhesiveness, and self-cleanness. Such multifunctional surface properties are attributed to three-dimensional surface structures with modulated surface wettability. Especially, hydrophobic surface structures create a composite interface with liquid by retaining air between the structures, minimizing the contact area with liquid. Such non-wetting surface property, so-called superhydrophobicity, can offer numerous application potentials, such as hydrodynamic drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing. Over the last couple of decades, we have witnessed a significant advancement in the understanding of surface superhydrophobicity as well as the design, fabrication, and applications of superhydrophobic coatings/surfaces/materials. In this talk, the designs, fabrications, and applications of superhydrophobic surfaces for multifunctionalities will be presented, including hydrodynamic friction reduction, anti-biofouling, anti-corrosion, and anti-icing.

  • PDF

Development and Application of Coating Weight Control Technology

  • Park, Jin-Hyoung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.159-163
    • /
    • 2010
  • Precise coating weight control is very important issue on quality and minimizing operating costs on continuous galvanizing line. These days, many steel making companies are having a new understanding of cost importance by rise raw material prices and customer's requirement for cost reduction. Dongbu steel also meets these situations and decided to develop the technologies. Dongbu Steel developed Integrated coating weight control system jointly with Objective Control Ltd. and installed 2CGL and 4CGL. Several technological functions were developed and realized to achieve true hands-off operation and maximum cost benefit by combining model-based preset and dynamic prediction models. We also installed it on 1 CGL on April, 2008. This paper will present the interface, functions and application result of the integrated coating weight control system including Zn saving and coating weight uniformity.

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

Development of Hybrid (Sb/Ca) Flooded Lead-Acid Battery for Minimizing Water Loss (감액 특성 향상을 위한 하이브리드(Sb/Ca) 액식 연축전지 개발)

  • Song, Seung Yun;Lim, Tae Seop;Kim, Sung Jun;Jung, Yeon-Gil;Yang, SeungCheol
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.146-152
    • /
    • 2022
  • One disadvantage of deep cycle flooded lead-acid batteries is increasing water loss caused by use of (+) Pb-Sb / (-) Pb-Sb alloy grid. Water loss is generated by the emission of hydrogen gas from the (-) electrode during battery charging. In this paper, we maintain cycle life aspect through the development of hybrid flooded lead-acid batteries to which a (+) Pb-Sb / (-) Pb-Ca grid is applied and deal with the improvement of water loss. The amount of water loss compared to that of the (-) Pb-Sb grid decreased when Ca was added to the (-) Pb grid. For the (-) Pb-Ca grid, it was confirmed that the time to reach 0.0 V, at which water decomposition occurs, was increased compared to that of the (-) Pb-Sb grid at the NPV (Negative Potential Voltage). In the cycle life test conducted with the BCI (Battery Council International) standard, compared to the (+) Pb-Ca grid, the (+) Pb-Sb grid increased the life cycle of the batteries and the (+) Pb-Ca grid showed an early end of life due to PbO corrosion layer generation, as determined through SEM / EDS and Tear Down analysis. In conclusion, by addition of Sb to (+) Pb grid and Ca to (-) Pb grid, we developed a hybrid flooded lead-acid battery that meets user requirements to improve water loss characteristics and preserve cycle life characteristics.

EMTP-analysis of Transposition Effects on Underground Transmission Cables (EMTP를 이용한 지중케이블의 도체 연가 영향 분석)

  • Ha, C.W.;Han, S.H.;Heo, H.D.;Lee, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.93-94
    • /
    • 2006
  • The sheath of a single-conductor cable for ac service acts as a secondary of a transformer, the current in the conductor induces a voltage in the sheath. When the sheaths of single-conductor cables are bonded to each other, as is common practice for multi-conductor cables, the induced voltage causes current to flow in the completed circuit. This current causes losses in the sheath. Various methods of bonding may be used for the purpose of minimizing sheath losses. In korea, sheath cross bonding system was employed for the prevention of sheath losses, the sheaths wire subjected to at voltages, and the bonding was designed to keep the magnitude of the induced voltages within small limits so as to prevent the possibility of sheath corrosion. But, sheath cross bonding system without transposition of cable can not achieve an exact balance of induced sheath voltages unless the cables are lain in trefoil. This paper describes a transposition system with sheath cross bonding using EMTP(Electromagnetic Transient Program). The transposition system with cross bonding can be extended to longer cable circuits for laid in flat as wall as trefoil by the methods described in this paper.

  • PDF