• Title/Summary/Keyword: miniaturized forming system

Search Result 5, Processing Time 0.023 seconds

Development of a Miniaturized Microforming System and Investigation of Deformation Behavior of Material for the Production of Micro Components by Forming (미세 부품 성형을 위한 소형 마이크로 성형시스템 개발 및 재료의 변형 거동 고찰)

  • Nam, Jung-Soo;Park, Il-Gu;Lee, Sang-Won;Kim, Hong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1221-1227
    • /
    • 2012
  • As demands on micro-products increase significantly with raising functional integration and increasing complexity, microfoming attracts a lot of attention in the manufacture of micro-products. Since the conventional big forming systems are not adequate to achieve sufficient tolerances of micro-scale parts, it is necessary to reduce the scale of the forming equipment and devices. In addition, understandings on the size effects, which exist in the material behavior and process characterization of microforming processes, need to be expanded. In this study, a miniaturized forming system based on the ball screw and servo motor actuator was developed for the efficient micro-parts production. In addition, tensile tests and cylindrical upsetting experiments were performed to evaluate the performance of the microforming system and to investigate the flow stress and friction size effects in microforming processes.

Improvement of the Optical Characteristics of Vision System for Precision Screws Using Ray Tracing Simulation (광선추적을 이용한 정밀나사 비전검사용 광학계의 결상특성 향상)

  • Baek, Soon-Bo;Lee, Ki-Yean;Joo, Won-Jong;Park, Keun;Ra, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1094-1102
    • /
    • 2011
  • Recent trends for the miniaturization and weight reduction of portable electronic parts is the use of subminiature components. Assembly of the miniaturized components requires subminiature screws of which pitch sizes are in a micrometer scale. To produce such a subminiature screw with high precision threads, not only a precision forming technology but also high-precision measurement technique is required. In the present work, a vision inspection system is developed to measure the thread profile of a subminiature screw. Optical simulation based on a ray tracing method is used to design and analyze the optical system of the vision inspection apparatus. Through this simulation, optical performance of the developed vision inspection system is optimized. The image processing algorithm for the precision screw inspection is also discussed.

Vibration Analysis for a Feeding Unit of Vision Inspection System of Precision Screws (정밀나사 비전검사시스템용 자동공급장치 진동특성의 해석)

  • Seo, Ye-Rin;Park, Keun;Kim, Seong-Keol;Ra, Seung-Wu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.446-451
    • /
    • 2011
  • Recent trends for the miniaturization and weight reduction of portable electronic parts have driven uses of subminiature components. Assembly of the miniaturized components requires subminiature screws of which pitch sizes are micrometer scale. To produce such subminiature screws with high precision threads, not only a precision forming technology but also a high-precision measurement technology is required. The present study covers the development of a vision inspection system for precision screws for the automatic measurement of subminiature screws with high speed and reliability. In this study, the feeding unit that transfers the subminiature screws to the inspection unit is investigated through finite element(FE) analysis. The vibration characteristics of the feeding unit are predicted through FE analyses, from which we can determine whether the subminiature screw can be stably fed into the inspection unit or not. The effects of several design parameters on the vibration characteristics are also discussed.