• Title/Summary/Keyword: mini-emulsion

Search Result 5, Processing Time 0.019 seconds

The photocatalytic activities of nano-titanium dioxide on the cotton fabrics for self-cleaning properties

  • Metanawin, Siripan;Metanawin, Tanapak;Panutumrong, Praripatsaya;Hathaiwaseewong, Sunee;Chaichalermvong, Tirapong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.129-137
    • /
    • 2015
  • The study of photocatalysis of nano titanium dioxideon the cotton fabrics have been investigatedthrough self-cleaning properties. The mini-emulsion technique was employed to prepare the encapsulation of titanium dioxide nano particles in polystyrene beads prior used. The mini-emulsion was coated on the cotton fabrics using Pad-dry method.The loading amount of TiO2particles into the mini-emulsion were various from 1%wt to 40%wt. The particles sizes of the TiO2-encapsulated polystyrene mini-emulsion were investigated by dynamic light scattering. It was noticed that the particle size of the mini-emulsion was in the range of 100- 200 nm. The morphology of treated cotton fabrics were investigated using scanning electron microscopy. The crystal structure of TiO2-encapsulated PS mini emulsion which coated on cotton fabrics were examined by X-ray diffraction spectroscopy. In order to investigate the photocatalytic activities of TiO2 through the selfcleaning characteristics of the cotton fabrics, colorant stains were created on the samples. Coffee stains were used as colorant organic stains. The result shown that the coffee stained on the cotton fabrics significantly showed the improving of the self-cleaning properties under UV radiation.

The effect of nano-Zinc oxide on the self-cleaning properties of cotton fabrics for textile application

  • Panutumrong, Praripatsaya;Metanawin, Tanapak;Metanawin, Siripan;O-Charoen, Narongchai
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The self-cleaning properties of nano-zinc oxide on cotton fabrics have been investigated. The cotton fabric has been prepared by pad-dry method. The nano-zinc oxide was encapsulated in the polystyrene particle by mini-emulsion process prior used. The loading amount of zinc oxide particles into the mini-emulsion were various from 1% wt to 40%wt. The particles sizes of ZnO-encapsulated polystyrene mini-emulsion were determined using dynamic light scattering. It was showed that the particle size of the mini-emulsion was in the range of 124-205 nm. The topography and morphology of ZnO-encapsulated polystyrene which coated on cotton fabrics was observed using scanning electron microscopy. The crystal structure of ZnO-coated on cotton fabrics was explored by X-ray diffraction spectroscopy. The photocatalytic activities of zinc oxide were present through the self-cleaning properties. The presents of the zinc oxide on cotton fabrics significantly showed the improving of the self-cleaning properties under UV radiation.

Film Image Transfer System (FITS): An Efficient Method for Proper Positioning of Orthodontic Mini-implants

  • Go, Taek-Su;Kim, Seong-Hun;Nelson, Gerald
    • Journal of Korean Dental Science
    • /
    • v.4 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Purpose: To describe the newly developed Film image transfer system (FITS) for proper positioning of the orthodontic mini-implant in the narrow interdental space and considerations for better application. Materials and Methods: A patient who was planning to have orthodontic mini-implant treatment on the posterior maxilla was recruited to assess the feasibility of FITS. Dental radiographic film and bite record was taken. And then the film image was transferred on the photographic emulsion coated model using transfer light through film projector (enlarger). After exposing the photo emulsion coating on the model, the image was developed with a working solution for a paper developer and fixed. The surgical guide for the mini-implant was fabricated from the transported FITS data. Results: The completed surgical guide was easily placed intraorally, and allowed a simple and rapid placement of the mini-implant. The site of the implant placement was accurate as planned position. Conclusion: In the reported case, The FITS technique represents an effort to minimize risk to the patient and produce consistently good results based upon accurate information about the anatomy of the implant site.

Preparation of Silica Hollow Composite Particles

  • Lee, Dong Hoon;Lee, Chang Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3303-3306
    • /
    • 2014
  • A facile and effective approach has been developed to prepare hybrid hollow microspheres, via consecutive processes of pickering mini-emulsion polymerization for core-shell formation, and calcination of the sacrificial core. The resulting hollow composite particles have mono-layered shells. The morphology and size characteristics of synthesized composite particles were investigated, using dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements.

Preparation and Characterization of Nano-sized Hydrogels (nanogels) Using Inverse-miniemulsion Polymerization Method for Protein Drug Delivery (단백질 약물 전달을 위한 Inverse-miniemulsion Polymerization 방법으로 제조하는 나노크기의 수화젤(나노젤)의 제조 및 특성평가)

  • Kang, Soo-Yong;Munkhjargal, Odonchimeg;Kim, Seong-Cheol;Park, Ah-Reum;Shim, Young-Key;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Hydrogels are thought to be a promising delivery carrier for protein drugs because of their favorable aqueous environment compared with nano/micro-particles of hydrophobic polymer such as PLGA. In this study, nano-sized hydrogels (nanogels) were fabricated using inverse-miniemulsion polymerization method. The mean size of nanogels in range of 90-160nm and affected by the preparation parameters such as sonication time and concentration of monomer. While longer sonication time and lower concentration of acrylamide monomer showed a tendency to produce smaller nanogels and to have lower lysozyme activity, variation of bis-methylene acrylamide concentration made no difference. Although both longer soncaton time and lower acrylamide concentration increased in vitro release rate, acrylamide concentration was more effectively affected to the control of protein release rate, which indicated that the release rate of protein from nanogels affected by not only their size but also internal structure. In conclusion, nanogels prepared by inverse-miniemulsion can be a useful carrier for application of protein drug, because of simple process, minimum contact of organic solvent and high protein activity.