• Title/Summary/Keyword: mini-artificial chromosome

Search Result 4, Processing Time 0.017 seconds

Simultaneous Overexpression of Integrated Genes by Copy Number Amplification of a Mini-Yeast Artificial Chromosome

  • Jung, Heo-Myung;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.821-825
    • /
    • 2018
  • A copy number amplification system for yeast artificial chromosomes (YACs) was combined with simultaneous overexpression of genes integrated into a YAC. The chromosome VII (1,105 kb) was successfully split to 887 kb, 44 kb containing the element for copy number amplification, and a 184-kb split-YAC. The 44-kb split-mini YAC was amplified a maximum of 9-fold, and the activity of the reporter enzymes integrated into the split-mini YAC increased about 5-7-fold. These results demonstrate that the mini-YAC containing a targeted chromosome region can be readily amplified, and the specific genes in the mini-YAC could be overexpressed by increasing the copy number.

Manipulation of Mini-Yeast Artificial Chromosome Containing Xylan Metabolism Related Genes and Mitotic Stability Analysis in Yeast (Xylan 대사유전자를가진미니효모인공염색체의가공및 Mitotic Stability 분석)

  • Da-In Kang;Yeon-Hee Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.436-440
    • /
    • 2022
  • In this study, yeast artificial chromosome Insert (YAC) harboring genes which related xylan metabolism was constructed by using chromosome manipulation technique. For efficient chromosome manipulation, each splitting fragment (DNA module) required for splitting process was prepared and these DNA modules were transformed into Saccharomyces cerevisiae strain YKY164. By two-rounds chromosome splitting, yeast chromosome VII (1,124 kb) was split 887 kb-YAC, 45 kb-mini YAC and 198 kb-YAC and YKY183 strain containing 18 chromosomes was constructed. Splitting efficiency for chromosome manipulation was 50- 78% and expression level of foreign genes on 45 kb-mini YAC and enzyme activity were indistinguishable from that of the YKY164 strain. Furthermore, xylan-degraded products by recombinant enzymes were confirmed and mini-yeast artificial chromosome maintained stable mitotic stability without chromosome loss during 160 generations.

Creation of an Ethanol-Tolerant Yeast Strain by Genome Reconstruction Based on Chromosome Splitting Technology

  • Park, A-Hwang;Sugiyama, Minetaka;Harashima, Satoshi;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.184-189
    • /
    • 2012
  • We sought to breed an industrially useful yeast strain, specifically an ethanol-tolerant yeast strain that would be optimal for ethanol production, using a novel breeding method, called genome reconstruction, based on chromosome splitting technology. To induce genome reconstruction, Saccharomyces cerevisiae strain SH6310, which contains 31 chromosomes including 12 artificial mini-chromosomes, was continuously cultivated in YPD medium containing 6% to 10% ethanol for 33 days. The 12 mini-chromosomes can be randomly or specifically lost because they do not contain any genes that are essential under high-level ethanol conditions. The strains selected by inducing genome reconstruction grew about ten times more than SH6310 in 8% ethanol. To determine the effect of mini-chromosome loss on the ethanol tolerance phenotype, PCR and Southern hybridization were performed to detect the remaining mini-chromosomes. These analyses revealed the loss of mini-chromosomes no. 11 and no. 12. Mini-chromosome no. 11 contains ten genes (YKL225W, PAU16, YKL223W, YKL222C, MCH2, FRE2, COS9, SRY1, JEN1, URA1) and no. 12 contains fifteen genes (YHL050C, YKL050W-A, YHL049C, YHL048C-A, COS8, YHLComega1, ARN2, YHL046W-A, PAU13, YHL045W, YHL044W, ECM34, YHL042W, YHL041W, ARN1). We assumed that the loss of these genes resulted in the ethanol-tolerant phenotype and expect that this genome reconstruction method will be a feasible new alternative for strain improvement.

An Increment of Crossing Efficiency with Consideration of Pollen Viability Analysis in Rose (장미 교배 효율 증대를 위한 화분 임성 검정)

  • Hwang, Yoon Jung;Song, Chang Min;Kwon, Min Kyung;Kim, Sung Tae;Kim, Won Hee;Han, Youn Yol;Han, Tae Ho;Lim, Ki Byung
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • Current rose cultivars are all composed of heterozygous genome due to long history of out crossing including interspecific hybridization. It has been adapted by artificial selection and crossing by breeders that mainly based on the crossing with fertile pollen derived from inter- or intra-specific hybridization. Pollen viability and germination ability tests provide valuable information for the designing of parentage for more successful breeding efficacy. In this study, we tested the pollen viability and germination ability in seven rose cultivars to find any relationship among several factors including pollen size, ploidy levels, and crossing compatibility. The pollen viability showed wide ranges from 39% 'Pinocchio' as minimum to 82% 'Scarlet Mimi' as maximum, whereas pollen germination rate were from 1% 'Mini Rosa' to 41% 'Scarlet Mimi' as a highest. Pollen size ranged from 41.3 to $45.4{\mu}m$ in large sized pollen and 30.7 to $37.4{\mu}m$ in small sized pollen. The mean diameter of large sized pollen is approximately 10-40% bigger than that of small sized pollen. There are positive relationships among ploidy level, total chromosome length, and pollen size. Crossing list showed that seed setting ratio and seed germination were related to pollen viability, pollen germination, and ploidy level.