• Title/Summary/Keyword: mines

Search Result 851, Processing Time 0.025 seconds

Occurrence and Mineralogical Characteristics of Dolomite Ores from South Korea (국내 백운석 광석의 산상과 광물학적 특성)

  • Hwang, Jinyeon;Choi, Jin Beom;Jeong, Gi Young;Oh, Jiho;Choi, Younghun;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • The occurrence, mineralogical characteristics, and origin of the dolomite ores were investigated from major dolomite mines in South Korea. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and scanning electron microscopy. Dolomite ores were light to dark gray in color and mainly composed of dolomite in varying particle size with minor amounts of calcite, quartz and micas. Calcite, quartz, illite, feldspar, kaolin minerals, and chlorite occurred in local veins, dikes and alteration zones. Sepiolite and wollastonite occurred in the altered part of some mine. Asbestos minerals such as chrysotile and tremolite, however, were not identified in the present study. Reddish brown to yellow clay materials were mainly composed of illite, occasionally associated with kaolin minerals and smectite. These clay minerals might be a product of the local hydrothermal alteration related to the dyke intrusion and subsequent weathering. As well indicated in the previous studies, mineral composition, texture, and occurrence of the dolostone beds suggest their formation through the diagenesis of carbonate sediments deposited in the shallow sea during the Precambrian to Paleozoic period.

Concentration of Arsenic in Rice Plants and Paddy Soils in the Vicinity of Abandoned Zinc Mine (폐광산 인근 논토양과 수도의 비소함량 조사)

  • Kim, Chan-Yong;Park, Man;Lee, Dong-Hoon;Choi, Choong-Lyeal;Kim, Kwang-Seop;Choi, Jung;Seo, Young-Jin
    • Applied Biological Chemistry
    • /
    • v.45 no.3
    • /
    • pp.152-156
    • /
    • 2002
  • Soils near abandoned zinc mines were known to be contaminated with arsenic-rich mining by-products. To examine the potential impacts of arsenic- contaminated soils on plant growth, surface soils were subjected to sequential extraction. Results revealed that 54% and 74% total As and 74% total extractable As were bound to iron hydrous oxide, and water soluble fraction was below detection limit. Arsenic faction extracted using the Koran standard method(dissolution of metals via treatment of 1 N HCI) was strongly correlated with the Fe-bound As fraction ($r^2=0.884**$). Arsenic level in rice plant roots was the highest with a maximum value of 154.9 mg/kg, whereas it was below 0.6 mg/kg in grains. Arsenic level in rice plant roots was strongly correlated with those of Al-bound As ($r^2=0.821**$) and 1N HCI-extractable As levels ($r^2=0.801**$).

Effect of Contamination by the Abandoned Coal Mine Drainage on the Stream Water in Keumsan, Chungnam (금산(錦山) 폐탄광지역(廢炭鑛地域)의 오염(汚染)이 하천수(河川水)에 미치는 영향(影響))

  • Kim, Myung Hee;Min, Ell Sik;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.435-442
    • /
    • 1997
  • The research was carried out to investigate the contamination of stream water by the acid mine drainage originated from the abandoned coal mines and coal waste rock in Keumsan, Chungnam. The pH, sulfate and chemical compositions in the stream water were analyzed. At the polluted sites, the pH of stream water was the strong acid, ranging from 3.46 to 4.29. The pH shows negative correlations with sulfate, manganese, copper, zinc, iron and magnesium concentrations. Sulfate concentrations of the polluted stream water, 236.73-310.53mg/l, had 10 times more than those of the non-polluted stream water. The concentrations of heavy metals, Mn and Fe, in the polluted water were 0.56 - 0.83mg/l and 5.89 - 10.58mg/l, respectively. The Mn concentrations were 20 times higher than those of the non-polluted stream water. Compared with those in the non-polluted stream water, the Mg and Ca concentrations in the polluted stream water were high because of leaching from rock and soil to water by the acidifications. Calculated AMDI(Acid Mine Drainage Index) values are low in the polluted stream water, relative to those of the non-polluted water.

  • PDF

A Study on the Recycling of Waste in the Limestone Mine (석탄석광산 폐석의 재활용 연구)

  • Chae, Young-Bae;Joeng, Soo-Bok;Koh, Won-Sik;Park, Je-Shin;Yang, Shi-Young
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.25-31
    • /
    • 1996
  • The wastes ot l~mestone mines have been cause the extrar.ngance of the valuablz m e r a l s and destruction of the environment. Therefore, \\-c tied ta separation of calcite illid clay from the limestone mine wastes by rotntmg screen type separator made by ourselves in order to recyding such us a raw matcriala for cement maimfacture. CaO amtents in the separated coarse products increased from 37.36 wt% to 42+2 wt% at the condition ihat water content in wastes was lzss than 6wt%, the passing time of specimen in &amber was 15 semnds and the rotation speed was 6OLl qm. A process in order lo separate wastes effectively to having wide range aI part~dcs ize was cstablishcd and CaO contents of coarsc products through this process increased to 46.85 wt%. Tbis rcsult is insuEiicient to directly rcusing as a raw malerials for cement. However, it is supposed that coarse products would be able to be reuscd as a raw materials uf cement, if only it rs sclected dolomite in wastes, and really it may be possible in fields Othenvise, undcrsize products(less than 20 mm) would be able to recycling as a raw of cement bccause chcmicrl campasitions of thosc is kept almost constant v&cs on the overall process.

  • PDF

Geological Structures and Mineralization in the Yeongam Mineralized Zone, Korea (영암 광화대의 지질구조와 광화작용)

  • Ryoo, Chung-Ryul;Park, Seong-Weon;Lee, Hanyeang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • The Yeongam mineralized zone is located in the southwestern part of the Korean peninsula, including the Sangeun, Eunjeok and Baramjai mines. This zone is located in the northeastern part of the Mokpo-Haenam-Yeongam volcanic circular structure. The 13 sites of quartz vein with mineralization are developed in the Sangeun-Eunjeok-Baramjai area, within rhyolitic welded tuff, showing N-S or NNW trend with highly dipping to the west. The quartz veins occur as a single vein or a bundle of veins with width of 1-5 cm in each. The existence of faults parallel to the quartz veins indicates that the faulting occurred before and after the development of quartz veins and mineralization. The quartz veins and mineralized zone are displaced by NW-trending sinistral strike-slip faults. The extension of the Sangeun-Eunjeok mineralized belt is traced to the south, following a NNW-trending tectonic line, and the Au-Ag contents are analysed in the 12 sites of quartz veins. Contents of gold and silver are 12.3 g/t and 1,380.0 g/t in Eunjeok mine, 2.7 g/t, 23.5g in Sangeun mine, and <0.1 g/t, 5.7 g/t in Baramjai mine respectively. Therefore, a highly Ag-Au mineralized zone is not developed in the southern part of the studied area.

Evaluation of Accuracy and Utilization of the Drone Photogrammetry for Open-pit Mine Monitoring (노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.191-196
    • /
    • 2019
  • The development of open-pit mines leads to large-area topographical changes in highland forests and can lead to severe deterioration of forests, requiring continuous monitoring. The drone photogrammetry is performed at a lower altitude than the existing manned aerial photogrammetry, and thus has a relatively high accuracy. The purpose of this study is to construct spatial information of large open pit mine using drone photogrammetry and to evaluate the accuracy and utilization of the results. The accuracy of the drone photogrammetric results was 0.018 ~ 0.063m in the horizontal direction and 0.027m ~ 0.088m in the vertical direction. These results satisfy the permissible accuracy of 1: 1,000 digital topographic map and it can be used for open mine monitoring. The geospatial information of the open pit mine can be used in various ways, and it can be used to monitor the quantitative change of a specific area for time series change through data management by periodic data acquisition. If drone photogrammetry is applied to open-pit mine monitoring in the future, work time and cost can be greatly reduced compared to the conventional GNSS or total station method, and the work efficiency can be greatly improved because more visible data can be generated.

Study of dynamic mechanical behavior of aluminum 7075-T6 with respect to diameters and L/D ratios using Split Hopkinson Pressure Bar (SHPB)

  • Kim, Eunhye;Changani, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.857-869
    • /
    • 2015
  • The aluminum 7075-T6 is known as an alloy widely used in aircraft structural applications, which does not exhibit strain rate sensitivity during dynamic compressive tests. Despite mechanical importance of the material, there is not enough attention to determine appropriate sample dimensions such as a sample diameter relative to the device bar diameter and sample length to diameter (L/D) ratio for dynamic tests and how these two parameters can change mechanical behaviors of the sample under dynamic loading condition. In this study, various samples which have different diameters of 31.8, 25.4, 15.9, and 9.5 mm and sample L/D ratios of 2.0, 1.5, 1.0, 0.5, and 0.25 were tested using Split Hopkinson Pressure Bar (SHPB), as this testing device is proper to characterize mechanical behaviors of solid materials at high strain rates. The mechanical behavior of this alloy was examined under ${\sim}200-5,500s^{-1}$ dynamic strain rate. Aluminum samples of 2.0, 1.5 and 1.0 of L/D ratios were well fitted into the stress-strain curve, Madison and Green's diagram, regardless of the sample diameters. Also, the 0.5 and 0.25 L/D ratio samples having the diameter of 31.8 and 25.4 mm followed the stress-strain curve. As results, larger samples (31.8 and 25.4 mm) in diameters followed the stress-strain curve regardless of the L/D ratios, whereas the 0.5 and 0.25 L/D ratios of small diameter sample (15.9 and 9.5 mm) did not follow the stress-strain diagram but significantly deviate from the diagram. Our results indicate that the L/D ratio is important determinant in stress-strain responses under the SHPB test when the sample diameter is small relative to the test bar diameter (31.8 mm), but when sample diameter is close to the bar diameter, L/D ratio does not significantly affect the stress-strain responses. This suggests that the areal mismatch (non-contact area of the testing bar) between the sample and the bar can misrepresent mechanical behaviors of the aluminum 7075-T6 at the dynamic loading condition.

Human Risk Assessment of Arsenic and Heavy Metal Contamination and Estimation of Remediation Concentration within Abandoned Metal Mine Area (폐금속 광산지역 비소 및 중금속 오염에 대한 인체위해성평가 및 복원농도 설정)

  • Lee, Sang-Woo;Kim, Jeong-Jin;Park, Mi Jeong;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.309-323
    • /
    • 2015
  • This study was initiated to propose the method for human risk assessment suitable to metal mine area. Using a variety of exposure parameters extracted from the investigation of abandoned metal mines, the proposed method was applied to assess the risk of As and heavy metal contamination for inhabitants (male and female adults and child) within an abandoned mine area. Based on the results of risk assessment, in addition, target remediation concentrations of each media (soil, groundwater, and surface water) were estimated. The results indicate that total carcinogenic risk (TCR) and hazard index (HI) representing carcinogenic and non-carcinogenic risks, respectively, were calculated to exceed the tolerable levels (1.00E-6 and 1) with regard to two exposure pathways (groundwater and crop intakes) and As. Thus, the human risk of study area was evaluated to be significant. Based on the target risk (TR) for carcinogens, the remediation concentrations of soil were computed to be 6.83~6.85 mg/kg and 18.41~18.46 mg/kg for As and Pb, respectively. In terms of target hazard index (THI) for non-carcinogens, the remediation concentrations of soil were calculated to be 17.38 mg/kg for Cu and 9.13 mg/kg for As.

Suction Stress Characteristic Curve before Failure in the K0 Consolidated Triaxial Tests for the Compacted Residual Soil (다짐 풍화토의 K0 압축 삼축시험에서 나타난 파괴이전 흡수응력 특성곡선)

  • Oh, Se-Boong;Lu, Ning;Song, Ha-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • The hypothesis on effective stress of unsaturated soil is validated by $K_0$ consolidation results of triaxial tests for the compacted residual soil. The stress characteristic curve (SSCC) can describe unsaturated soil behavior on water contents, which was defined from shear strength or from soil water characteristic curves. In this study, it was found that the stress path of $K_0$ consolidation can also define the SSCC. The effective stress was defined by SSCC. $K_0$ paths for various matric suctions could be described as a unique line by effective stress. The measured values of $K_0$ were interpreted by effective stress as a constant with respect to matric suction. Since the SSCC from $K_0$ consolidation agrees with that from the shear strength, the SSCC from soil water retention curve could describe effective stress behavior consistently on both $K_0$ consolidation path and stress at failure. The effective stress based on SSCC can describe the entire unsaturated behavior from consolidation to failure.

Geochemical Environments of Copper-bearing Ore Mineralization in the Haman Mineralized Area (함안지역 함 동 광화작용의 지화학적 환경)

  • Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The Haman mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Almost all occurrences in the Haman area are representative of copper-bearing polymetallic hydrothermal vein-type mineralization. Within the area are a number of fissure-filling hydrothermal veins which contain tourmaline, quartz and carbonates with Fe-oxide, base-metal sulfide and sulfosalt minerals. The Gunbuk, Jeilgunbuk and Haman mines are each located on such veins. The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage I, tourmaline + quartz + Fe-Cu ore mineralization; Stage II, quartz + sulfides + sulfosalts + carbonates; Stage III, barren calcite. Equilibrium thermodynamic data combined with mineral paragenesis indicate that copper minerals precipitated mainly within a temperature range of $350^{\circ}C$ to $250^{\circ}C$. During early mineralization at $350^{\circ}C$, significant amounts of copper ($10^3$ to $10^2\;ppm$) could be dissolved in weakly acid NaCl solutions. For late mineralization at $250^{\circ}C$, about $10^0$ to $10^{-1}\;ppm$ copper could be dissolved. Equilibrium thermodynamic interpretation indicates that the copper in the Haman-Gunbuk systems could have been transported as a chloride complex and the copper precipitation occurred as a result of cooling accompanied by changes in the geochemical environments ($fs_2$, $fo_2$, pH, etc.) resulting in decrease of solubility of copper chloride complexes.