• 제목/요약/키워드: mineralization zones

검색결과 73건 처리시간 0.023초

대곡(大谷) W-Sn-Cu 광상(鑛床)의 열수변질작용(熱水變質作用) (Wall-rock Alteration Relating to Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan)

  • 김문영
    • 자원환경지질
    • /
    • 제21권3호
    • /
    • pp.209-221
    • /
    • 1988
  • The ore deposit of the Ohtani mine is one of repesentatives of plutonic tungsten-tin veins related genetically to acidic magmatism of Late Cretaceous in the Inner zone of Southwest Japan. Based on macrostructures of vein filling on the order of ore body, three major mineralization stages, called stage I, stage II, and stage ill from earliest to latest, are distinguished by major tectonic breaks. The alteration zories are characterized by specific mineral associations in pseudomorphs after biotite. The alteration zones can be divided into two parts, i. e. a chlorite zone and a muscovite zone, each repesenting mineralogical and chemical changes produced by the hydrothermal alteration. The chloritic alteration took place at the beginning of mineralization, and muscovite alteration in additions to chloritic alteration took place at stage II and ill. The alteration zones are considered to be formed by either of two alteration mechanism. 1) The zones are formed by reaction of the rock with successive flows of solution of different composition and different stage. 2) The zones are formed contemporaneously as the solution move outward. Reaction between the solution and the wall-rock results in a continuous change in solution chemistry. The migration of the successive replacement of the fresh zone$\rightarrow$the chlorite zone$\rightarrow$the muscovite zone may have transgressed slowly veinward, leaving metasomatic borders between the different zones.

  • PDF

Sediment-hosted gold mineralization of the Kyaukpahto mine, Kawlin Township, Myanmar

  • Swe, Ye-Myint;Min, A-Ung;Lee, In-Sung
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.315-315
    • /
    • 2003
  • Gold mineralization at Kyaukpahto occurs as stockworks/disseminations and locally as breccia zones in silicified sandstones of Lower to Middle Eocene Male Formation of Myanmar. The mineralization is spatially related with NNE -trending fracture zones_probably tensional open fractures caused by the right-lateral Sagaing fault system. Intensive silicification, sericitization, argillic alteration, sulfidation, and decalcification are recognized in the Kyaukpahto mine area. (omitted)

  • PDF

영일지역(迎日地域) 제삼기(第三紀) 신광화대(新鑛化帶)의 광물학적(鑛物學的) 특성(特性), 성인(成因) 및 그 잠재성(潛在性)에 관(關)한 연구(硏究) (Mineralogy, Genesis and Potential of a New Tertiary Mineralized Zone in Yeongil Area, Korea)

  • 김수진;노진환
    • 자원환경지질
    • /
    • 제10권2호
    • /
    • pp.53-66
    • /
    • 1977
  • Epithermal Mn-Au-Ag deposits of subvolcanic type in the Yeongil area discovered by one (Soo Jin Kim) of the present authors was studied with emphasis on their mineralogy, genesis and future potential. Mineralization is genetically related to volcanic activities of the Tertiary Period, which have produced porphyritic rhyolite, granite porphyry, felsitic rhyolite and agglomerate. Ore deposits are closely associated with felsitic rhyolite. They occur as breccia-filling, veins, or networks. Mineralization is characterized by rhodochrosite-sulfide ores of breccia-type in the central zone, and sulfide ores of disseminated type in the outer zone. Sulfides consist mainly of pyrite and marcasite, with minor chalcopyrite, sphalerite, argentian tetrahedrite, galena and gold in the central zone, and of pyrite, marcasite and argentian tetrahedrite in the outer zone. Sulfides are generally not easily identified with naked eye because of their very fine-grained nature. Wall rock alteration zones are also developed around ore deposits over the large area. Occurrence of ore deposits and the nature of mineralization indicate that the uppermost portion of ore deposits are now exposed on the surface, and therefore, the main mineralized zones are expected in depth.

  • PDF

태백산광화대내의 원동 다금속광상의 성인 (Ore Genesis of the Wondong Polymetallic Mineral Deposits in the Taebaegsan Metallogenic Province)

  • 황덕환;이재영
    • 자원환경지질
    • /
    • 제31권5호
    • /
    • pp.375-388
    • /
    • 1998
  • The purpose of this study is to investigate the ore genesis and occurrence of the Wondong polymetallic mineral deposits. The Pb-Zn, Fe and W-Mo mineralizations are found in skarn zones which formed mainly in or along the fault shear zones with the $N25-40^{\circ}W$ and $N10-50^{\circ}E$ directions, whereas the Cu-Mo mineralization is appeared hydrothermal replacement zone. The skarn minerals consist mainly of garnet and epidote, which were the last alteration phases between pneumatolytic and hydrothermal stages. The mineral paragenesis toward the late stage are as follows: arsenopyrite, scheelite, magnetite, pyrite, pyrrhotite, sphalerite, galena, chalcopyrite and molybdenite. Average ore grades are 0.33 g/t Au, 46.29 g/t Ag, 0.06% Cu, 4.4% Pb, 2.61% Zn and 29.39% Fe in tunnels, and 0.31 % Cu, 0.52% Pb, 6.29% Zn, 29.29% Fe, 0.03% Mo and 0.12% $WO_3$ in drill cores. Fluid inclusion data shows that Type I (liquid-rich), Type II (vapor-rich) and Type III (halite-bearing) inclusions are coexisted and their homogenization temperatures are quite similar. This indicates that boiling conditions have been reached during the mineralization. It is also likely that the ore solutions were evolved through the mixing between magmatic and meteoric waters. Rhyolite and quartz porphyry far the mineralization probably are not responsible of the Wondong polymetallic mineral deposits.

  • PDF

동점광산(銅店鑛山) 동광상(銅鑛床)에 대(對)한 I.P물리탐사(物理探査) (Induced Polarization Prospecting at the Dongjeom Copper Mine)

  • 방기열;이승종;한민호;이경용
    • 자원환경지질
    • /
    • 제18권4호
    • /
    • pp.301-308
    • /
    • 1985
  • I.P exploration is conducted mainly at the alluvium covered granodiorite stock of the Red Hill area at the Dongjeom coal mine, employing Canadian Mcphar equipments of variable frequencies-domain method along a total of 8.5 survey line. Mineralization zone is found by LP anomalies along the I.P the profile of frequency mode. Comparing with the past drilling data, the cause of each anomly is furthermore identified as copper bearing mineralized zones. As alteration and mineralization cover all over the Red-Hill altered grandiorite, copper bearing sulfide veinlets and strings filled out the fractured and altered zones.

  • PDF

Overview of Epithermal Gold-Silver Mineralization, Korea:

  • Park, Seon-Gyu;Ryu, In-Chang;So, Chil-Sup;Wee, Soo-Meen;Kim, Chang-Seong;Park, Sang-Joon;Kim, Sahng-Yup
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.7-14
    • /
    • 2003
  • The precious-meta] mineralization of epithermal type in the Korean Peninsula, which is spread over a broader range of ca. 110 to 60 Ma with a major population between 90 and 70 Ma, mainly occurred along the NE-trending major strike-slip fault systems (i.e., the Gongju and Gwangju ones) that commonly include volcano-tectonic depressions and calderas. The occurrence of epithermal mineralization during Late Cretaceous clearly indicates that the geologic setting of the Korean Peninsula changed to the favorable depth of ore formation with very shallow-crustal environments (〈1.0 kb) accompanied with gold-silver (-base-meta]) mineralization. Epithermal gold-silver deposits in Korea are primarily distinguished as sediment-dominant and volcanic-dominant basins by using criteria of varying alteration, ore and gangue mineralogy deposited by the interaction of different ore-forming fluids with host rocks and meteoric waters. These differences between the central and southern portions are causally linked to the tectonic evolution of the Peninsula during the Cretaceous time. In the Early Cretaceous, the sinistral strike-slip movements due to the oblique subduction of the Izanagi Plate resulted in the Gongju and Gwangju fault systems in the central portion of the Korean Peninsula, which was accompanied with a number of sediment-dominant basins formed along these faults. During the Late Cretaceous, the mode of convergence of the Izanagi Plate changed to northwesteward so that orthogonal convergence occurred with a calc-alkaline volcanism. As results, volcanic-dominant basins were developed in the southern portion of the Peninsula, accompanied with volcano-tectonic depressions and caldera-related fractures. The magmatism and related fractures during Late Cretaceous may play an important role in the formation of geothermal systems. Thus, such fault zones may be favorable environments for veining emplacement that is closely related to the precious-metal mineralization of epithermal type in the Korean Peninsula.

  • PDF

Lithological and Structural Lineament Mapping from Landsat 8 OLI Images in Ras Kammouna Arid Area (Eastern Anti-Atlas, Morocco)

  • Es-Sabbar, Brahim;Essalhi, Mourad;Essalhi, Abdelhafid;Mhamdi, Hicham Si
    • 자원환경지질
    • /
    • 제53권4호
    • /
    • pp.425-440
    • /
    • 2020
  • The study area is located in the southern part of the M'aider Paleozoic basin in the Moroccan Eastern Anti-Atlas. It is an arid region, characterized by minimal vegetation cover, which can provide an ideal environment to apply remote sensing. In this study, remote sensing and field investigations were integrated for lithological and structural lineaments mapping. The Landsat 8 OLI data were processed in order to understand the role of lithology and geological structures in the distribution of mineral deposits in the study area. To achieve this purpose, the Color Composite (CC), the Principal Component Analysis (PCA) and Band Rationing transformation (BR) tests were performed. The results of remote sensing techniques coupled with field investigations have shown that the zones of high lineaments densities are highly correlated with the occurrences of barite mineralization. These findings depict a spatial relationship between structural lineaments and the mineralization distribution zones. Therefore, the barite and Iron oxides mineralization veins, which occur mainly in the Ras Kammouna district, seem to have a structural control. The methodological approach used in this study examining lithological mapping and lineament extractions can be used to explore mineral deposits in arid regions to a high degree of efficiency.

상은광산(常隱鑛山)의 Au-Ag 광맥(鑛脈)의 광물(鑛物) 공생(共生) 및 화학조성(化學組成) (Mineral Paragenesis and Chemical Composition of Sangeun Au-Ag Ore Vein, Korea)

  • 김문영;신홍자;김종환
    • 자원환경지질
    • /
    • 제24권4호
    • /
    • pp.347-361
    • /
    • 1991
  • The Sangeun ore deposit is located in a volcanic belt within the Gyeongsang Basin in south western Korea. The ore deposit is of representative epithermal Au-Ag quartz vein type developed in lapilli tuff. This paper presents the mineralization with special emphasis on mineral zoning of the deposits. Principal points are summarized as follows: (1) Four stages of mineralization are recognized based on macrostructures. From ealier to later they are stage I(arsenopyrite-pyrite-quartz), stage II(Au-Ag bearing Pb-Zn-quartz), stage III(barren quartz), and stage IV(dickite-quartz). (2) Electrum principally occurs with arsenopyrite and galena in stage II, and has chemical compositions of 72.9-67.1 Ag atom %, and has Ag/Au ratio of 2.69-2.04. (3) Sphalerite varies in its FeS content according to the mineralization stages; 22.03-18.60 mole % FeS and 1.33-0.23 mole % MnS in stage IB, 16.11-8.64 mole % FeS and 1.33-0.23 mole % MnS in stage II. (4) Alteration zones of mineral assemblage, from the vein to the wall-rock, consist of sericite - quartz - pyrite, sericite - quartz - dickite, sericite - chlorite plagioclase respectively.

  • PDF

마산 용장광산에서 금광에 대한 물리탐사의 적용 (Application of geophysical exploration for gold in the YongJang mine, Masan)

  • 박종오;송무영;박충화;유영준
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.213-219
    • /
    • 2006
  • 용장광산은 경상남도 마산시에 위치하며 흑색셰일내에 발달한 열극에 열수가 충진하여 형성된 함금은석영맥으로 구성된다. 이러한 광맥은 평균 맥폭이 $9{\sim}17cm$이며, 평균 품위가 금이 3.6 g/t이며, 은이 113.6 g/t 이하로 나타났다. 본 연구지역에서 전기 비저항 탐사는 유화광물을 포함한 광화대의 부존과 지질구조선을 파악하기 위하여 광역적조사와 정밀조사로 구분하여 실시하였다. 탐사방법은 지표에서 쌍극자배열 탐사와 경사시추공에서 시추공-지표, 지표-시추공 및 시추공내 쌍극자배열 탐사를 병행하였다. 경사시추공내의 쌍극자배열 탐사는 하나의 요소안에 여러 전극들이 존재하여 요소분할 방법을 이용하여 결과를 도출하였다. 정밀조사지역에서 용장맥의 연장성은 상부에서 짧지만 심부에 다소 길게 나타났으나 BH(04-04)호공의 측선까지 연장되지 않았다. 즉, 전기비저항 탐사의 3차원적 역산 해석은 광화대 및 구조대의 발달 상황 등이 각 심도에 따른 영상들로 제시되므로 광맥의 주향방향과 연장성이 비교적 정확하게 파악하였다.

  • PDF

경남(慶南) 동남부지역(東南部地域) 철광상(鐵鑛床)의 성인(成因)에 관(關)한 연구(硏究) (Genesis of Iron Ore Deposits in the south-eastern Part of Gyeongnam Porvince, Korea)

  • 우영균
    • 자원환경지질
    • /
    • 제21권1호
    • /
    • pp.45-56
    • /
    • 1988
  • Many hydrothermal skarn-type iron ore deposits inchiding Mulgeum, Yangseong, Maeri and Kimhae mines are distributed in the south-eastern Gyeongnam Province, Korea. The deposits are magnetite veins which occurred in propylitized andesitic rock near the contact with late Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The order of the skarn zones from the vein is garnet-quartz skarn, epidote skarn, and epidote-orthoclase skarn. The garnets include isotropic or anisotropic andradite($Ad_{100{\sim}70}$), and the epidotes are composed of pistacite($Ps_{21-31}$). Fe contents of the epidotes generally increase toward the magnetite veins. Epidotes and garnets often show compositional variations from grain to grain, that is, their Fe and Al contents vary inversely. This suggests that the variations depend mainly upon $fo_2$ during the skarnization. Oxygen and carbon isotope analyses of minerals from andesitic rock, micrographic granite, major skarn zones and post-mineralization zones were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothemal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the more deeply seated micrographic granite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and the extensive isotopic exchange occurred with the propylitized andesitic rock. During this process, the temperature and ${\delta}O^{18}_{H_2O}$ value of hydrothermal solution were lowered gradually. At the stage of iron ore precipitation, because after all the alteration was already finished, the oxygen isotopic exchange with the wall rock was nearly not taken. The relatively high ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$, and relatively low ${\delta}C^{13}$ values of calcites of post mineralization stage, are the results of leaching of the high ${\delta}O^{18}$ chert xenolith in the andesitic rock and low ${\delta}C^{13}$ andesitic rock.

  • PDF