• Title/Summary/Keyword: mineral surface

Search Result 1,087, Processing Time 0.031 seconds

A Study on Magnetization of Layered Metal Sulfide for the Removal of Cesium Ions from Aqueous Solution (수중 세슘 제거를 위한 층상 황화 금속 물질 자성화 연구)

  • Chul-Min Chon;Jiwon Park;Jungho Ryu;Jeong-Yun Jang;Dong-Wan Cho
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.4
    • /
    • pp.1-5
    • /
    • 2023
  • In the fabrication of magnetic adsorbent by incorporating iron species on base materials with layered structure, there can be a potential loss of adsorption capacity from the penetration of dissolved iron species into the structure. This work newly synthesized a magnetic adsorbent by incorporating nano magnetite and glucose into layered metal sulfide via hydrothermal treatment, and tested the removal efficiencies of cesium ions (Cs+) by the adsorbents fabricated under different conditions (final temperature and glucose mass ratio). As a result, the optimal fabrication condition was found to be mass ratio of 1 (layered metal sulfide): 0.1 (nano magnetite): 0.4 (glucose) and final temperature of 160℃. As-prepared adsorbent possessed good adsorption ability of Cs+ (54.8 mg/g) without a significant loss of adsorption capacity from attaching glucose and nano magnetite onto the surface.

Geochemical Characteristics of the Mineral Water in Taegu Area. (대구지역에 분포하는 약수의 지구화학적 특성)

  • 김종근;이재영
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.56-65
    • /
    • 1997
  • Chemical analysis, statistical analysis and geochemical study were carried out to investigate the influence of the geology on the chemical characferistics of the mineral water in Taegu area. A simple comparision between the chemical components of the mineral water and their bedrocks indicates that the bedrock types in the catchmerit area control the chemical characteristics of the surface water. However more objective evidences for the mineral water-bedrock relationship come from the statistical analyses(cluster analysis and factor analysis). The results of the statistical analyses suggest that the bedrock type factor explains the data variation seven times as much as pollution does, which evidently indicates that the bedrock in the study area mainly control the mineral water chemistries. The results of comparision of the statistical analyses results with the mineral weathering reactions and mineral stability diagrams can be summarized as follows: 1. Plagioclase weathering to kaolinite provides SiO$_2$ , Ca$^{2+}$ and Na$^+$, and muscovite weathering to kaolinite provides K$^+$, and amphibole and mica minerals weathering to kaolinite provides F to the mineral water. Most of Ca$^{2+}$ and Mg$^{2+}$ in the mineral water are the products of carbonate mineral dissolution. SO$_4^{2-}$ may be the byproduct of sulfide oxidation. 2. The weatering of silicate mineral produces Ca-rich smectite and kaolinite, but Ca-rich smectite is unstable and will be transformed to more stable kaolinite because of the continuous dilution of the mineral water by precipitation. By Hashimoto's Mineral Balance Index, S-10 and S-12 mineral spring water were evaluated tasty and healthy water, S-9 and S-11 mineral spring water were evaluated tasty water and S-7, S-8 and S-13 mineral spring water were evaluated healthy water.

  • PDF

Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS).

  • Kim, Ju-Yeong;Chryssoulis, S.;Gong, Bong-Seong
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.50-57
    • /
    • 2005
  • Although the bulk composition of materials is one of the major considerations in extractive metallurgy and environmental science, surface composition and topography (edges and dislocations are preferred sites for physicochemical reactions) control surface reactivity, and consequently play a major role in determining metallurgical phenomena and pollution by heavy metals and organics. An understanding of interaction mechanisms of different chemical species with the mineral surface in an aqueous media is very important in natural environment and metallurgical processing. X-ray photoelectron spectroscopy (XPS) has been used as an ex-situ analytical technique, but the material to be analyzed can be any size from $100{\mu}m$ up to about 1 cm. It can also measure mixed solids powders, but it is impossible to ascertain the original source of resulting x-ray signals where they were emitted from, since it radiates and scans the macro sample surface area.

  • PDF

Encapsulated Silicon Nanocrystals Formed in Silica by Ion Beam Synthesis

  • Choi, Han-Woo;Woo, Hyung-Joo;Kim, Joon-Kon;Kim, Gi-Dong;Hong, Wan-Hong;Ji, Young-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.525-528
    • /
    • 2004
  • The photoluminescence (PL) emission of Si nanocrystals synthesized by 400 keV Si ion implanted in $SiO_2$ is studied as a function of ion dose and annealing time. The formation of nanocrystals at around 600 nm from the surface was confirmed by RBS and HRTEM, and the Si nanocrystals showed a wide and very intense PL emission at 700-900 nm. The intensity of this emission showed a typical behaviour with a fast transitory increase to reach a saturation with the annealing time, however, the red shift increased continuously because of the Ostwald ripening. The oversaturation of dose derived a decrease of PL intensity because of the diminishment of quantum confinement. A strong enhancement of PL intensity by H passivation was confirmed also, and the possible mechanism is discussed.

INFLUENCE OF HUMIC SUBSTANCE (HS) ADSORPTIVE FRACTIONATION ON PYRENE PARTITIONING TO DISSOLVED AND MINERAL-ASSOCIATED HS

  • Hur, Jin;Schlautman, Mark A.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.123-127
    • /
    • 2003
  • Changes in pyrene partitioning due to mineral surface adsorptive fractionation processes of humic substances (HS) were examined in model environmental systems. For purified Aldrich humic acid(PAHA), carbon-normalized pyrene binding coefficients ( $K_{oc}$ ) for the residual (i.e., nonadsorbed and dissolved) PAHA components were different from the original dissolved PAHA $K_{oc}$ , value prior to contact with mineral suspensions. A positive correlation between the extent of pyrene binding and weight-average molecular weight (M $W_{w}$) of residual PAHA components was observed, which appeared to be unaffected by the specific mineral adsorbents use and fractionation mechanisms. A similar positive correlation was not observed with the adsorbed PAHA components, suggesting that conformational changes occurred for the mineral-associated components upon adsorption. Nonlinear pyrene sorption to mineral-associated PAHA was observed, and the degree of nonlinearity is hypothesized to be dependent on adsorptive fractionation effects and/or structural rearrangement of the adsorbed PAHA components.s.

  • PDF

Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga (통가국 라우분지 TA 26 해저산의 열수변질작용)

  • Cho, Hyen Goo;Kim, Young-Ho;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.233-247
    • /
    • 2012
  • We have researched the distribution and characteristics of seafloor hydrothermal deposits for the development of economic mineral deposits in the Lau Basin, Tonga since 2009. In this study, we interpreted hydrothermal alteration around TA 26 seamounts of the Tofua volcanic arc using X-ray diffraction analysis for bulk sample and preferred-oriented specimen of clay fraction. We used 2 core samples and several surface samples. Plagioclase and quartz are dominant mineral in the basement rock, whereas kaolin mineral and smectite are superior in marine surface sediments. Especially sulfate and sulfide minerals such as gypsum, barite, sphalerite, and pyrite are predominant in the vent sediments. When we compare the mineral composition between basement rock and sea surface sediments, argillic alteration zone composed of kaolin mineral and smectite could be produced by hydrothermal fluids. Based on the downcore variation of mineral assemblages, most portion of MC08H-06 core could be interpreted as argillic alteration zone composed of kaolin mineral and smectite except top 2 cm area. Various sulfate or sulfide minerals and argillic alteration zone suggest a high probability of massive sulfide deposits in the seafloor of the TA 26 seamount.

A Comparative Study on Absolute and Relative Clay Mineral Composition of the Surface Sediments around the Jeju Island (제주도 주변해역 표층퇴적물의 점토광물 절대함량 및 상대함량 비교연구)

  • Moon, Dong-Hyeok;Cho, Hyen-Goo;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2010
  • The absolute clay mineral compositions and regional distribution of the 131 bulk marine surface sediments around the Jeju Island was compared to their relative compositions and distribution using quantitative X-ray diffraction analysis. Average absolute clay mineral composition is illite 15.3% (0.5~40.5%), chlorite 2.6% (0~7.9%), and kaolinite 1% (0~5.6%). Total contents of the clay minerals are very high in the South Sea of Korea, northwestern part and southern offshore of Jeju Island. The average relative composition is illite 70.9% (16.7~89%), chlorite 21.5% (8.4~68.5%), and kaolinite 7.6% (0~29.3%). Relative illite contents are high in the northwestern and southeastern part of study area, and southern part of Jeju Island. Chlorite contents are high in the eastern part of study area and western part of Jeju Island. Kaolinite contents are high in the western and southern part of Jeju Island, and southern offshore of Jeju Isand. Absolute Distribution patterns are very similar to those of fine-grained (from clay to silt) sediment, whereas relative distribution patterns do not show any relationship with those of fine-grained sediment.

State-of-the-art Studies on Infrasound Monitoring in Korea (국내 인프라사운드 관측기술의 최신 연구 동향)

  • Che, Il-Young;Lee, Hee-Il;Jeon, Jeong-Soo;Shin, In-Cheul;Chi, Heon-Cheol
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.286-294
    • /
    • 2010
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) has installed and operated seven seismoacoustic (infrasound) arrays as well as seismic stations in Korea. The seismo-acoustic array, which consists of co-located seismometers and micro-barometers, can observe both seismic and infrasonic signals from distant explosive phenomena. The infrasound is defined as low frequency (<20 Hz) acoustic waves in atmosphere. In particular, it can be detectable at long distance due to its low energy attenuation during propagation in atmosphere. KIGAM adopted the infrasound technology to discriminate surface explosions from earthquakes only because the surface explosion generally generates infrasound following seismic signal. In addition to surface explosions, these arrays have detected diverse geophysically natural and artificial phenomena, such as infrasound signal from the North Korean nuclear test. This review introduced the state-of-the-art studies and examples of infrasonic signals in and around the Korean Peninsula. In conclusion, infrasound technology would be clearly accepted itself as a new Earth monitoring technology by expanding its detectable regime to lithosphere-Earth surface-atmosphere. In future, an advanced technology, which allows to analyze seismic and infrasonic wave fields together, will enlarge the understanding of geophysical phenomena and be used as a robust analysis method for remote explosive phenomena in the broad infrasound regime.

Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System (편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링)

  • 정찬호;김천수;김통권;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

THE EFFECTS OF THE DEGREE OF SATURATION OF ACIDULATED BUFFER SOLUTIONS IN ENAMEL AND DENTIN REMINERALIZATION AND AFM OBSERVATION OF HYDROXYAPATITE CRYSTALS (유기산 완충용액의 포화도가 법랑질 및 상아질의 재광화에 미치는 영향과 수산화인회석의 AFM 관찰)

  • Park, Jeong-Won;Hur, Buck;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.459-473
    • /
    • 2000
  • Dental caries is the most common disease in the maxillofacial area. There are many factors contributing to its development, but complete understanding and prevention is not fully known. Since the structure of the coronal and root portion of the tooth is different, the remineralization and demineralization process is also known to be different. In this study, by using a partially saturated buffer solution, we created artificial enamel and dentin caries and evaluated mineral loss. A remineralization solution with four different degrees of saturation (degree of saturation ; group 1, 0.268, group 2, 0.309, group 3, 0.339, group 4, 0.390, PH 4.3, F-2ppm) was used on a demineralized specimen. The mineral precipitating quantity and depth was evaluated by using microradiography. Using an atomic force microscope (AFM), hydroxyapatite crystals of normal, demineralized, and remineralized enamel and dentin were evaluated. The results were as follows: 1. As the degree of saturation of the remineralizing solution increased, the mineral precipitation in the enamel was increased. In group 4, mineral precipitation was limited near the surface. 2. As the degree of saturation of the remineralizing solution increased, the mineral precipitation in the dentin was decreased and it occurred in a deeper portion. In group 4, however, mineral precipitation occurred on the surface and its quantity increased. 3. There was a statistically significant interaction between enamel and dentin mineral content changes on specimens treated with remineralization and demineralization solution (demineralization r=0.44, remineralization r=0.44, p<0.05). 4. Demineralized hydroxyapatite crystals showed central and peripheral dissolving and widening of intercrystal spaces under the AFM. 5. In dentin remineralization small crystal precipitation occurred between the large crystals. We conclude that by adjusting acidulated buffer solution's degree of saturation, we can control enamel and dentin remineralization. In addition, the AFM is highly useful in evaluating changes in remineralized and demineralized hydroxyapatite crystals.

  • PDF