• Title/Summary/Keyword: mineral separation

Search Result 257, Processing Time 0.025 seconds

Separation and Mineralogy of Marine Sand Near Haeju bay, North Korea (북한 해주만 부근 해사의 선별 및 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Soo-Jung;Kim, Wan-Tae;Lee, Chun-Oh;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-227
    • /
    • 2009
  • Heavy minerals in the marine sand near Haeju bay, Hwanghae-do, North Korea were separated using the gravity and the magnetic separators. And their mineralogical study was carried out. Ilmenite, magnetite, hematite, zircon and monazite were observed as the valuable minerals, and quartz, orthoclase, muscovite, hornblende and garnet existed as gangue minerals. In the result of quantitative analysis with SIROQUANT program, the contents of the valuable minerals separated with the 2nd gravity separation (the shaking table separation), the 1st magnetic separation (rare earth magnetic separation) and the 2nd magnetic separation (the Eddy current magnetic separation) were increased into 4%, 10% and 76~89% (under the condition of 7000 G and 10000 G in magnetic strength), respectively. The contents of ilmenite, monazite and zircon recalculated from the chemical composition differed from the results of the quantitative analyses by SIROQUANT program, but the entire tendency bears some analogy with it. Under the conditions of 7000 G and 10000 G in 2nd magnetic separation the contents of ilmenites were concentrated with 53% and 66%, respectively. The content of monazite was 1.2% in the magnetic fractions of the 1st magnetic separation. The content of zircon was shown 1.4% under the condition of 10000 G in the 2nd magnetic separation, and was displayed 9% in +50 mesh of non-magnetic fraction of 1st magnetic separation, especially.

Mineralogy of Beach Sand in Jaeun Island, Shinangun, Chonranamdo (전라남도 신안군 자은도 해빈사의 광물학적 특성)

  • Chae, Soo-Chun;Jung, Jee-Sung;Jang, Young-Nam;Bae, In-Kook;Shin, Hee-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.289-302
    • /
    • 2007
  • Separation process of heavy minerals was performed with sand from Dunjang beach of Jaeundo, Shinangun, Chonnam, and the feasibility study separating heavy minerals was carried out, and their properties were studied. Samples were selected in three parts, which were upper part, middle part and lower part, with depth. Samples of heavy mineral groups separated with the spiral separator were chosen as starting materials, and they were separated with 3 times of table separation. Heavy minerals presenting in this area were ilmenite, zircon, rutile, anatase, monazite, and xenotime. In the results of 3 times of table separation, minor content of quartz, orthoclase, albite and muscovite were existed as gangue minerals. Accordingly, we concluded that additional specific gravity separation was needed. In the results of separation of heavy minerals by hand picking, it was confirmed that heavy minerals had various genesis because of their various roundness and color.

Upgrading of Iron from Waste Copper Slag by A Physico-chemical Separation Process (Physico-chemical 분리 공정에 의한 폐동슬래그로부터 철의 품위향상)

  • Lee, Kwang-Seok;Jo, Seul-Ki;Shin, Doyun;Jeong, Soo-Bock;Lee, Jae-Chun;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.30-36
    • /
    • 2014
  • A large amount of waste copper slag containing about 35 ~ 45% iron has been generated and discarded every year from pyrometallurgical processes for producing copper from copper concentrate. Thus, recovery of iron from the waste copper slag is of great interest for comprehensive use of mineral resource and reduction of environment problems. In this study, a physico-chemical separation process for upgrading iron from the waste copper slag discharged as an industrial waste has been developed. The process first crushes the waste copper slag below 1 mm (first crushing step), followed by carbon reduction at $1225^{\circ}C$ for 90 min (carbon reduction step). And then, resulting material is again crushed to $-104{\mu}m$ (second crushing step), followed by wet magnetic separation (wet magnetic separation step). Using the developed process, a magnetic product containing more than 66 wt.% iron was obtained from the magnetic separation under a magnetic field strength of 0.2 T for the waste copper slag treated by the reduction reaction. At the same conditions, the percentage recovery of iron was over 72%. The iron rich magnetic product obtained should be used as a iron resource for making pig iron.

Mineralogy of Sea Sand Near Ongjingun through the Separation Processes (옹진군 해사의 선별공정에 따른 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Chun-Oh;Kim, Jung-Yoon;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2011
  • Mineralogical study was carried out for heavy minerals in the sea sand near Ongjingun bay, Kyonggi-do separated using the gravity and magnetic separators. Ilmenite, zircon and minor monazite and garnet were valuable minerals with gangue minerals of quartz, K-feldspar, plagioclase, muscovite, hornblende, epidote and chlorite. Quantitative analysis with SIROQUANT program showed that the contents of ilmenite separated with the gravity separation (the shaking table separation), the 1st step magnetic separation (rare earth magnetic separation) and the 2nd step magnetic separation (the Eddy current magnetic separation) were increased into 0.8, 18.3, and 48.7%, respectively. The content of ilmenite, monazite and zircon were recalculated based on the chemical composition of the representative and heavy fraction products of raw sand, the 1 step and 2 step gravity separations, and the 1 step and 2 step magnetic separations. The content increased to 0.23, 0.55, 5.22, 16.17, and 44.99% in ilmenite, 0.11, 0.02, 0.16, 0.51, and 1.19% in monazite. Although the zircon content did not differ over the processes (0.13, 0.12, 0.11, 0.15, and 0.10%), the improved recovery of zircon is expected by applying sieving process because of its high content (27%) in the fine grain size fraction (< 140#) of the 2 step gravity separation.

Mongolia Erden-soum tungsten development (몽골 에르덴솜 텅스텐광 개발을 위한 선별시스템 개발)

  • Kim, Su-Gang;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Byoung-Gon
    • Mineral and Industry
    • /
    • v.28
    • /
    • pp.1-13
    • /
    • 2015
  • In this study, it was carried out separation process research and development to be able to produce high-grade tungsten concentrate form tungsten taken form Mongolia. In order to reduce treatment cost and increase separation efficiency the jig separation at first was applied for recovering the concentrate. Which reground would make the degree of liberation increase. Which was treated by shaking table to reject the gangue minerals from the first concentrate. Because the heavier product contains not only ferberite but also cassiterite, the product was treated by further dry magnetic separation to obtain the ferberite concentrate. Finally, the high-grade ferberite concentrate of 67.63% $WO_3$ could be obtained with recovery of 86.07% through the separation process developed in this study.

  • PDF

The optimized recover process of heavy minerals from Korean beach-sand

  • Shin, Hee-Young;Jeon, Ho-Soek;Baik, Seung-Woo;Kim, Wan-Tae;Lee, Jae-Chun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.648-653
    • /
    • 2003
  • Optimized recovery of heavy minerals from the near shore sands of Korean Yellow Sea was investigated using physical processing technologies such as gravity concentration and magnetic separation. The head samples were subjected to the three stages effective separation; Head sample was first treated by a spiral separator to recover rough heavy mineral concentrates, which are contained minerals like ilmenite, zircon and rare earth minerals. Much higher beneficiation processes were subsequently taken by wilfley table and magnetic separation according to their magnetic field responses. Heavy minerals were effectively recovered by wilfley table and subsequent recleaning of heavy minerals by magnetic separations was conducted. Qualitative and relative-quantitative analyses of their constituent elements were doing using XRD and XRF.

  • PDF

Mineral Separation and Sample Preparation Methods Efficient for Subgrain Zircon Analyses (저어콘 아입자분석을 위한 효율적인 광물분리 및 시료준비 방법)

  • 조등룡
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.126-132
    • /
    • 2004
  • This study provides detailed sample preparation methods for subgrain zircon analyses, and a simple mineral separation technique which overflows light mineral grains out of beaker using the running water from faucet. Excluding separation steps using of the Wilfley table and heavy liquid, this technique is faster and more efficient than conventional one, and remarkably suitable for collecting small amount of zircon for subgrain analyses.

Research Trends in Flotation of Waste-plastics and Its Use as Functional Materials (폐플라스틱의 부유선별 및 기능성 소재로의 활용 연구동향)

  • Han, Yosep;Kim, Rina;Hong, Hye-Jin;Park, In-Su;Kim, Dong-Gyun;Kim, Yun Ho;Jeon, Ho-Seok;Chang, Hankwon
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.15-26
    • /
    • 2020
  • In recent years, there is an increasing interest in environmental friendly treatment of waste-plastics in terms of the generation of microplastics. Accordingly, the recycling of waste-plastics is very important because it provides advantages of volume reduction, mitigation of carbon dioxide emission, and reproduction of value-added products. In particular, in order to recycle the eco-friendly waste-plastics, it is necessary to use a physical separation methods, and among them, flotation separation, which can separate material (i.e., polymer component) in waste-plastics is well known as a very effective separation method in terms of material recycle. Therefore, in this review, the research trend of flotation separation for effective separation of mixture waste-plastics was investigated. In addition, through the reported research results, approaches to use as new functional materials from polymers, which are raw materials for waste-plastics, are summarized.

Solvent Extraction Separation of Co, Mn and Zn from leaching solution from Ni-Cd battery by Na-PC88A

  • Ahn Jong-Gwan;Park Kyoung-Ho;Sohn Jeong-Soo;Kim Dong-Jin;Lee Jaereyeong;Jeong HunSaeong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.618-623
    • /
    • 2003
  • Solvent extraction experiments for separation of impurities from Ni-rich solution were carried out for manufacturing of high purity Ni compounds from acid leaching solution of spent Ni-Cd secondary battery. Artificial and leaching solutions were used as aqueous phases and PC88A saponified by sodium in kerosene were used as organic phase. The extraction order is Zn>Mn>Co>Ni and extraction percentage of metal ions was increased with increase of the concentration of extractant, initial pH of aqueous phase and ratio of O/A. The separation of cobalt, zinc and manganese from nickel was effectively accomplished at the condition of extraction stage=l, O/A=1 and initial pH 5.0 with 1.0 $mol/dm^3$ PC88A saponified to $50\%$ with NaOH.

  • PDF

Precious Metals Extraction Processing in Chloride Media by Using Ionic Liquids as Novel Extractant Systems

  • Kumar, Jyothi Rajesh;Choi, In-Hyeok;Lee, Jin-Young
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.503-509
    • /
    • 2017
  • The present experimental study proposed two ionic liquids (ILs) namely [Aliquat 336] [$HSO_4$] (prepared and characterized at our laboratory) and Cyphos 101 IL (supplied by Cytec Company) dissolved in two different diluents such as DCM (di-chloro-methane) and toluene applied for PMs extraction. The first IL [Aliquat 336] [$HSO_4$] prepared and confirmed the formation of final product by using FT-IR and TGA studies. The primary experiment in solvent extraction processing is kinetic effect; 0 to 30 time varied for PMs by using two ILs and confirmed the optimized extraction equilibrium time. This study was conducted for PMs (Pt, Rh and Cu) extraction and separation from each other by using proposed ILs. This is the primary study of the utilizing green solvents such as ILs as an extractant system for Pt, Rh and Cu extraction and possible separation.