• Title/Summary/Keyword: mineral mix

Search Result 136, Processing Time 0.023 seconds

Methodology for Developing HMA Mix Design Taking into Account Performance-Related Mechanistic Properties (포장성능관련 역학적 특성이 고려된 아스팔트 혼합물의 배합설계법 개발 방안)

  • Kim Boo-Il;Lee Moon-Sup;Kim Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.15-23
    • /
    • 2006
  • Criteria of the current asphalt mix design, Marshall method, includes the stability and flow which are not related with field performance of HMA mixture, together with the air void, Void filled with asphalt (VFA) and/or Void of mineral Aggregate(VMA). In addition, the limits of stability and flow are satisfied in most cases, the Optimum asphalt content (OAC) is determined based on volumetric properties, such as the air void and/or VFA and/of VMA. Therefore, many researchers have sought mechanistic properties which can replace the stability and flow, making the designed mixture having potential for better field performance. This study initiated to develope a mix design by introducing two performance-related mechanistic properties, the deformation strengh and fracture energy, in place of the stability and flow of the Marshall method. The deformation strength $(S_D)$ from the Kim Test has a high correlation with rutting property and the fracture energy(FE) from the indirect tensile test represents the fatigue cracking property of asphalt mixture. Four types of asphalt mixture were prepared for examining possibility of using the suggested mix design method in comparison with current methods. The results showed that mechanical properties were reflected in determination of OAC with this suggested mix design, unlike the existing Marshall method.

  • PDF

Effect of Mixer on the Performance of Ultra-High Strength Steel Reinforced Concrete (초고강도 강섬유 보강 콘크리트의 성능에 미치는 믹서의 영향)

  • Park, Jung-Jun;Koh, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook;Han, Sang-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.549-552
    • /
    • 2006
  • Generally the ultra-high strength steel reinforced concrete has rich mix composition composed of high-strength type mineral admixtures and as a result of very low water-binder ratio(about under w/b=25%), it reveals ultra-high compressive strength(about over 100Mpa). Also, in order to obtain sufficient toughness after construction, we usually mix a large quantity steel fiber with ultra-high strength steel reinforced concrete therefore we must use proper mixer for workability. When we make the ultra-high strength steel reinforced concrete we need more long mixing time or much super-plasticizer than when we manufacture normal concrete. These bring about economical problems and performance deterioration. Therefore, in this study, in order to manufacture easily ultra-high strength steel reinforced concrete we develope a dedicated mixer for ultra-high strength steel reinforced concrete with high speed type. It carried out the examination for comparison between the dedicated and general type mixer, the analysis and counterplan of the point at issue when we manufacture ultra-high strength steel reinforced concrete by the dedicated mixer.

  • PDF

Evaluation of grout penetration in single rock fracture using electrical resistivity

  • Lee, Hangbok;Oh, Tae-Min;Lee, Jong-Won
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • In this study, a new approach using electrical resistivity measurement was proposed to detect grout penetration and to evaluate the grouting performance for such as waterproof efficiency in single rock fracture. For this purpose, an electrical resistivity monitoring system was designed to collect multi-channel data in real time. This was applied to a system for grout injection/penetration using a transparent fracture replica with various aperture sizes and water-cement mix ratio. The electrical resistivity was measured under various grout penetration conditions in real time, which results were directly compared to the visual observation images of grout penetration/distribution. Moreover, the grouting success status after the curing process was evaluated by measuring the electrical resistivity in relation to changes in frequency in fracture cells where grout injection and penetration were completed. Consequently, it was determined that the electrical resistivity monitoring system could be applied effectively to the detection of successful penetration of grouting into a target area and to actual field evaluation of the grouting performance and long-term stability of underground rock structures.

Chloride Diffusion Coefficient at Reference Time for High Performance Concrete for Bridge Pylons in Marine Environment (해상교량 주탑용 고성능 콘크리트의 기준재령 염소이온 확산계수)

  • Yoon, Chul-Soo;Kim, Ki-Hyun;Yang, Woo-Yong;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.435-444
    • /
    • 2012
  • High performance concrete mixes are selected and corresponding test specimens are made for the study of chloride diffusion coefficient at reference time. The concrete mixes were same designs as those used in construction of bridges located in a marine environment. Mix design variables included binder type, water-to-binder ratio, mineral admixtures to total binder weight substitution ratio, fine aggregate source, chemical water reducer admixture type for high strength and high flowability, and target slump or slump flow. The test results showed that the diffusion coefficients at reference time varied significantly according to the type of mineral admixtures and their substitution ratios. A model for diffusion coefficient at reference time considering the type of mineral admixture and the substitution ratio was developed. Diffusion coefficients from the developed model were compared with those from literature review, a previous model, and additional test results. All of the comparisons verified that the developed model can reasonably predict diffusion coefficients and the application of the model to the durability design against chloride penetration is appropriate.

Fire Resistance Performance Test of High Strength Concrete by Type of Mineral Admixture (혼화재 종류에 따른 고강도 콘크리트의 내화성능 평가)

  • Kwon, Ki-Seok;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.597-605
    • /
    • 2015
  • The method of concrete mix design used in this study aims to achieve the identical specified design strength, applying different types and replacement ratio of mineral admixtures and afterwards, fire tests were conducted using the standard time-temperature curve specified in the ASTM E119 to identify the influences of the types of mineral admixtures on the fire resistance performance of high strength concrete(HSC). The least spalling was observed in the test specimen containing blast furnace slag as a partial replacement of cement, while the most significant spalling phenomena were observed in the blast furnace slag test specimen that silica-fume was added in. In particular, the reasonable volume of spalling was observed when solely replaced by silica fume. However, the influence of the cement replacement by silica fume and blast furnace slag on the increases of spalling can be explained through blocked pores by the fine particles of silica fume, leading to decreases in permeability.

Evaluation of Durability Characteristics of High Performance Shotcrete Using Fly Ash (폐석탄회를 이용한 고성능 숏크리트의 내구특성 평가)

  • Park, Cheol-Woo;Lee, Hyeon-Gi;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.305-311
    • /
    • 2010
  • The industrial by-product market has increased at a geometric rate worldwide with the rapid economic growth. At present time, conventional disposal methods of industrial by-products in Korea including landfill, incineration and storage already have reached their limits. In this study, the industrial by-products such as fly ash and silicafume were used as mineral admixtures, which are commonly added to concrete mix to inhance the economic efficiency, long-term strength and durability of concrete, to determine the optimized mix proportion of high performance shotcrete. Through the series of tests (compressive strength test, accelerated chloride ion penetration test, measurement of chloride diffusion coefficient). The results of the study showed that the proposed mix proportions satisfied the requirements of domestic as well as international guidelines for shotcrete, with a higher durability than the existing shotcrete.

Experimental and numerical investigations of the influence of reducing cement by adding waste powder rubber on the impact behavior of concrete

  • Al-Tayeb, Mustafa Maher;Abu Bakar, B.H.;Akil, Hazizan Md.;Ismail, Hanafi
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2013
  • In this study, the effect of reducing cement by proportional addition of waste powder rubber on the performance of concrete under impact three-point bending loading were investigated experimentally and numerically. Concrete specimens were prepared by adding 5%, 10% and 20 % of rubber powder as filler to the mix and decreasing the same percentage of cement. For each case, three beams of $50mm{\times}100mm{\times}500mm$ were loaded to failure in a drop-weight impact machine by subjecting them to 20 N weight from 300mm height, while another three similar beams were tested under static load. The bending load-displacement behavior was analyzed for the plain and rubberized specimens, under static and impact loads. A three dimensional finite-element method simulation was also performed by using LUSAS V.14 in order to study the impact load-displacement behavior, and the predictions were validated with the experimental results. It was observed that, despite decreasing the cement content, the proportional addition of powder rubber until 10% could yield enhancements in impact tup, inertial load and bending load.

Time dependent equations for the compressive strength of self-consolidating concrete through statistical optimization

  • Hossain, K.M.A.;Lachemi, M.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.249-260
    • /
    • 2006
  • Self-consolidating concrete (SCC) in the fresh state is known for its excellent deformability, high resistance to segregation, and use, without applying vibration, in congested reinforced concrete structures characterized by difficult casting conditions. Such a concrete can be obtained by incorporating either mineral or chemical admixtures. This paper presents the results of an investigation to asses the applicability of Abram's law in predicting the compressive strength of SCC to any given age. Abram's law is based on the assumption that the strength of concrete with a specific type of aggregate at given age cured at a prescribed temperature depends primarily on the water-to-cement ratio (W/C). It is doubtful that such W/C law is applicable to concrete mixes with mineral or chemical admixtures as is the case for SCC where water to binder ratio (W/B) is used instead of W/C as the basis for mix design. Strength data of various types of SCC mixtures is collected from different sources to check the performance of Abram's law. An attempt has been made to generalize Abram's law by using various optimization methodologies on collected strength data of various SCC mixtures. A set of generalized equations is developed for the prediction of SCC strength at various ages. The performance of generalized equations is found better than original Abram's equations.

Permeation properties of concretes incorporating fly ash and silica fume

  • Kandil, Ufuk;Erdogdu, Sakir;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • This paper conveys the effects of fly ash and silica fume incorporated in concrete at various replacement ratios on the durability properties of concretes. It is quite well known that concrete durability is as much important as strength and permeability is the key to durability. Permeability is closely associated with the voids system of concrete. Concrete, with less and disconnected voids, is assumed to be impermeable. The void system in concrete is straightly related to the mix proportions, placing, compaction, and curing procedures of concrete. Reinforced concrete structures, particularly those of subjected to water, are at the risk of various harmful agents such as chlorides and sulfate since the ingress of such agents through concrete becomes easy and accelerates as the permeability of concrete increases. Eventually, both strength and durability of concrete reduce as the time moves on, in turn; the service life of the concrete structures shortens. Mineral additives have been proven to be very effective in reducing permeability. The tests performed to accomplish the aim of the study are the rapid chloride permeability test, pressurized water depth test, capillarity test and compressive strength test. The results derived from these tests indicated that the durability properties of concretes incorporated fly ash and silica fume have improved substantially compared to that of without mineral additives regardless of the binder content used. Overall, the improvement becomes more evident as the replacement ratio of fly ash and silica fume have increased. With regard to permeability, silica fume is found to be superior to fly ash. Moreover, at least a 30% fly ash replacement and/or a replacement ratio of 5% to 10% silica fume have been found to be highly beneficial as far as sustainability is concerned, particularly for concretes subjected to chloride bearing environments.

Effects of Dietary Addition of Bentonite and Probiotics on Meat Characteristics and Health of Hanwoo (Bos taurus coreanae) Steers fed Rice Straw As a Sole Roughage Source (a Field Study)

  • Kwak, Wan-Sup;Lee, Sang-Moo;Kim, Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.387-396
    • /
    • 2012
  • A study was conducted to determine the dietary effects of Na-bentonite (NaB) and probiotics on meat characteristics and health of Hanwoo steers fed rice straw as a sole roughage source. A total of 24 growing Hanwoo steers (avg BW 232 kg) were assigned to two treatments which included a control diet (concentrate mix and rice straw) and a treatment diet (control diet + 0.5-1.0% NaB + 0.5-1.0% probiotics. The diets were fed for 22 months up to the time the animals were slaughtered. Dietary treatment increased (p<0.05) concentrations of trace minerals such as Zn, Cu, and Fe in the longissimus muscle compared to the control. The treatment diet did not affect cold carcass weight, yield traits such as backfat thickness, longissimus muscle area, yield index, yield grade and quality traits such as marbling score, meat color, fat color, texture, maturity and quality grade. Blood profiles of growing steers were within the normal ranges for healthy cattle. In conclusion, feeding a combination of clay mineral and probiotics to Hanwoo steers fed rice straw as a sole roughage source could have a desirable effect on improving trace mineral retention in longissimus muscle without any deleterious effects on carcass traits of steers.