• Title/Summary/Keyword: mineral mix

Search Result 137, Processing Time 0.025 seconds

A Fluidity Experiment of Pre-Mix Cement for Dispersibility Improvement of Mineral Admixture (광물질 혼화재의 분산성 향상을 위한 프리믹스 시멘트의 유동성 실험)

  • Han, Cheon-Goo;Lee, Hai-Ill;Noh, Sang-Kyun;Kim, Ki-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.90-96
    • /
    • 2009
  • The high rising building construction makes increasing the requirement of high strength concrete. Especially, the workability analysis is related with dispersion of admixture such as SF for improving strength and FA, BS for reducing construction cost and improving durability of Ultra High Strength Concrete which has over 100 MPa of compressive strength is very important. Precisely, decreases dispersion because of lumping situation of each admixture and it causes the workability of admixture is decreased. Therefore, the workability of cement paste is tested for analyze effects of pre-mixed cement for solving those problems with it to this research. The summary of the results are like below. First of all, OBS is increasing workability more than OFS. This result causes that the glassy surface of BS in the OBS is increasing workability and the absorption of admixture of FA in the OFS is decreasing workability. In the case of mixing methods, pre-mixing method is increasing workability more than normal one. This result shows that the normal mixing method is bad dispersion of binders. The other side, the pre-mixing method is good. Furthermore, depending on the mixing time, according to the increasing mixing time such as 30, 60, and 120 seconds, the dispersion of binders and workability turns better.

  • PDF

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

Effect of Graded Levels of Cottonseed Cake Supplementation on Intake, Nutrient Digestibility, Microbial N Yield of Growing Native (Bos Indicus) Bulls Fed Rice Straw

  • Chowdhury, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.326-332
    • /
    • 2001
  • On a urea-molasses-straw (3:15:82; UMS) based diet effect of graded levels of cottonseed cake (CSC) supplementation on the performance of native (Bos indicus) bulls has been studied for 167 days. Eighteen growing bulls of $129{\pm}13.4kg$ weight and about 14 months old were randomly allocated to three dietary treatments designed in a completely randomized design, having six animals in each treatment. Three dietary treatments were 0, 0.5 and 1.0 kg CSC per head/d. In addition, each animal also received ad lib. UMS, 4 kg Napier (Pennisetum purpureum) grass, 500 g of each of rice and wheat bran and 60 g mineral mix daily. For unit increase in CSC, total DM intake was increased by $1g/kg\;W^{0.75}/d$ but the straw DM intake decreased by $0.54g/kg\;W^{0.75}/d$. Whole gut digestibility of DM and OM was not effected but N and ADF digestibility increased with incremental increase in dietary CSC. For unit (1kg) increase in dietary CSC intake N and ADF digestibility increased by 10 (${\pm}1.155$) and 3 (${\pm}1.732$) unit respectively. Microbial N yield for the 0, 0.5 and 1.0 kg CSC were 5.63, 5.28 and 5.16 g/kg OM apparently fermented in the rumen respectively. For each gram increase in CSC, N intake and N balance increased by 0.626 (${\pm}0.015$) and 0.625 (${\pm}0.0814$) mg/kg $W^{0.75}/d$. High apparent N balance was contrasted with low live weight gain, e.g., for 1 kg increase in CSC supplementation, live weight gain increased by only 0.077 (${\pm}0.00288$) kg/d ($r^{2}=0.99$; p<0.01). The conversion efficiency was 12.98 kg CSC per kg of live weight gain. It was concluded that unless the protein is being protected from the rumen degradation, addition of CSC to UMS diet would have little nutritional or economic advantages.

Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO

  • Benemaran, Reza Sarkhani;Esmaeili-Falak, Mahzad
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.309-316
    • /
    • 2020
  • The application of multi-variable adaptive regression spline (MARS) in predicting he long-term compressive strength of a concrete with various admixtures has been investigated in this study. The compressive strength of concrete specimens, which were made based on 24 different mix designs using various mineral and chemical admixtures in different curing ages have been obtained. First, The values of fly ash (FA), micro-silica (MS), water-reducing admixture (WRA), coarse and fine aggregates, cement, water, age of samples and compressive strength were defined as inputs to the model, and MARS analysis was used to model the compressive strength of concrete and to evaluate the most important parameters affecting the estimation of compressive strength of the concrete. Next, the proposed equation by the MARS method using particle swarm optimization (PSO) algorithm has been optimized to have more efficient equation from the economical point of view. The proposed model in this study predicted the compressive strength of the concrete with various admixtures with a correlation coefficient of R=0.958 rather than the measured compressive strengths within the laboratory. The final model reduced the production cost and provided compressive strength by reducing the WRA and increasing the FA and curing days, simultaneously. It was also found that due to the use of the liquid membrane-forming compounds (LMFC) for its lower cost than water spraying method (SWM) and also for the longer operating time of the LMFC having positive mechanical effects on the final concrete, the final product had lower cost and better mechanical properties.

Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Ahmadi, Masoud;Wakil, Karzan;Trung, Nguyen Thoi;Toghroli, Ali
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.183-195
    • /
    • 2020
  • Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement for Portland cement or blended cement in concrete based on the materials' properties and the concrete's desired effects. Several environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in comparison with an ANN-BP model.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

Effect of Feeding a Mixed Microbial Culture Fortified with Trace Minerals on the Performance and Carcass Characteristics of Late-fattening Hanwoo Steers: A Field Study

  • Kwak, W.S.;Kim, Y.I.;Lee, S.M.;Lee, Y.H.;Choi, D.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1592-1598
    • /
    • 2015
  • This study was conducted to determine the effects of feeding a trace minerals-fortified microbial culture (TMC) on the performance and carcass characteristics of late-fattening Hanwoo steers. A mixture of microbes (0.6% [v/w] of Enterobacter sp., Bacillus sp., Lactobacillus sp., and Saccharomyces sp.) was cultured with 99% feedstuff for ensiling and 0.4% trace minerals (zinc, selenium, copper, and cobalt). Sixteen late-fattening steers (mean age, 21.8 months) were allocated to two diets: a control diet (concentrate mix and rice straw) and a treated diet (control diet+3.3% TMC). At a mean age of 31.1 months, all the steers were slaughtered. The addition of TMC to the diet did not affect the average daily weight gain of the late fattening steers, compared with that of control steers. Moreover, consuming the TMC-supplemented diet did not affect cold carcass weight, yield traits such as back fat thickness, longissimus muscle area, yield index or yield grade, or quality traits such as meat color, fat color, texture, maturity, marbling score, or quality grade. However, consumption of a TMC-supplemented diet increased the concentrations of zinc, selenium, and sulfur (p<0.05) in the longissimus muscle. With respect to amino acids, animals consuming TMC showed increased (p<0.05) concentrations of lysine, leucine, and valine among essential amino acids and a decreased (p<0.05) concentration of proline among non-essential amino acids. In conclusion, the consumption of a TMC-supplemented diet during the late-fattening period elevated the concentrations of certain trace minerals and essential amino acids in the longissimus muscle, without any deleterious effects on performance and other carcass characteristics of Hanwoo steers.

Carcass Composition and Cuts of Bulls and Steers Fed with Three Concentrate Levels in the Diets

  • do Prado, Ivanor Nunes;Passetti, Rodrigo Augusto Cortez;Rivaroli, Dayane Cristina;Ornaghi, Mariana Garcia;de Souza, Kennyson Alves;Carvalho, Camila Barbosa;Perotto, Daniel;Moletta, Jose Luiz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1309-1316
    • /
    • 2015
  • In this paper, weight, carcass dressing, weights of the primary cuts, weights of the physical components of the primary cuts, and weights of the main commercial cuts of 66 $Purun{\tilde{a}}$ animals, of which 33 were bulls and 33 were steers were evaluated. These animals, with an average age of 19 months at the beginning of the experiment, were finished in a feedlot system during 116 days, and were fed with diets containing three levels of concentrate (0.8%, 1.1%, and 1.4% of body weight). The concentrate was formulated with 25% soybean meal, 73% ground corn grain, 1% of a mineral mix, and 1% of limestone. The interaction between sexual groups and the concentrate level was not significant for any of the variables. Likewise, no effect of the concentrate level was detected on the same variable traits. The bulls demonstrated higher hot carcass weights (265.1 vs 221.7 kg) and a higher proportion of forequarter (38.4% vs 36.1%) however the steers presented with higher proportions of side (19.7% vs 18.5%) and hindquarter (44.2% vs 43.1%). The bulls produced higher yields of muscle in the three primary cuts, there by resulting in higher yields of edible portions of the carcass. The bulls also produced higher weights of tenderloin, knuckle, topside, flat, eye round, rump, and rump cover. The finishing of young bulls in feedlot is to be recommended, since the animals produce carcasses with higher amounts of edible meat and higher yields of commercial cuts, thus allowing for a better price for the carcass. Low concentrate level could be used due to the lower cost of production for farmers.

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

A Study on the Development of Color Pavement (칼라포장(鋪裝) 개발(開發)에 관한 연구(研究))

  • Kim, Ju Won;Kim, Dae Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.11-18
    • /
    • 1982
  • The binder for hot mix type colored pavement must have the same physical qualities as the straight asphalt cement, but its color must not be dark-brown. We developed a kind of synthetic resin binder with light yellow color and confirmed its possibility as a binder for colored pavement through the several comparison tests between the straight asphalt cement concrete mixture and the mixture of binder and aggregate for colored pavement. For the pigment, it has been assured through tests that home products have the possiblities to be used. The binder has come to the stage of practical use through the trial mixing by asphalt mixing plant and the trial field placing. The mixing operation and the paving method of colored mixture are same as normal asphalt concrete mixture, but the quantity of pigment replaces that of mineral filler. The required content of pigment is decided by the trial mixing with other materials to be used.

  • PDF