• Title/Summary/Keyword: mineral fibers

Search Result 60, Processing Time 0.027 seconds

Management of Endodontic Perforation (End or And... 근관치료시 천공의 수복)

  • Jang, Ji-Hyun
    • The Journal of the Korean dental association
    • /
    • v.55 no.8
    • /
    • pp.565-573
    • /
    • 2017
  • Root canal perforations are defined as the communication between the pulp cavity, the periodontal tissue and alveolar bone. The occurrence of perforations during endodontic treatment is reported to range from 2.3%~12%, which is not a complication rarely happens. Perforations have iatrogenic or pathological etiologies that involve caries or resorption. It leads to inflammation and the destruction of periodontal fibers and alveolar bone, followed by periodontal defects. Mineral trioxide aggregate (MTA) is currently the most indicated material for repair of root perforation, because of its favorable biocompatibility and sealing ability. Using magnification with dental operating microscope enhance the accessibility and visibility to manage the root perforation. It is important to diagnose and repair perforations immediately if possible.

  • PDF

A Variety of Particles Including Tire Wear Particles Produced on the Road

  • Jung, Ui Yeong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.85-91
    • /
    • 2021
  • In this study, different types and shapes of various particles produced on the asphalt pavement road were analyzed. Road dust at a bus stop was collected and was separated as per their sizes by using a sieve shaker. Tire-road wear particles (TRWPs), asphalt pavement wear particles (APWPs), mineral particles, plant-related particles, glass beads, glass particles, road paint wear particles, plastic particles, and fibers were observed herein. The types and shapes of the particles varied depending on their sizes. TRWPs larger than 500 ㎛ were not observed. TRWPs with a size of 212-500 ㎛ were rarely present, but many TRWPs with a size smaller than 212 ㎛ were observed. APWPs were observed for whole-particle sizes of below 1,000 ㎛. A variety of particles on the road would lead to lower friction between the tires and the road, thereby increasing the braking distance of vehicles. Most of the particles include mineral particles, glass particles, and APWPs with rough surfaces. Therefore, the abrasion of the tire tread would accelerate owing to friction with the tough particles.

In Vitro Assessment of Cytotoxicity and Mutagenicity of Rock Wool Fibers (암면에 의한 세포독성 및 변이원성의 실험실적 평가)

  • Hong, Yun-Chul;Lee, Kwan-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.555-566
    • /
    • 1997
  • This study was carried out to evaluate the cytotoxicity of rock wool fibers(RWFs) such as cell division disturbance, chromosomal and DNA damage, and mutagenicity using cultured cells. RWFs were the man made mineral fibers. In order to find the correlation between the cytotoxicity of RWFs and the phagocytic capacity of cells, the phagocytic processes were observed using scanning electron microscope. Cell division disturbance by RWFs was evaluated by the formation of multinucleated giant cells. The chromosomal damage was evaluated by the micronucleus formation. For the evaluation of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation was measured utilizing calf thymus DNA. Mutagenicity was determined by the point mutation of HGPRT and the effect of RWFs on cell transformation was also observed. 1. Compared with the results of chrysotile, RWFs were no or little effect on the cell growth according to the results done by the tests of cell proliferation inhibition and relative plating efficiency. 2. The frequency of multinucleated giant cell formation was increased by the treatment of RWFs and it was dose-dependent. However, the effect of RWFs was weaker than that of chrysotile. 3. The number of micronuclei formed in the RWFs treated cells was between those of cells treated with chrysotile and those of untreated cells. 4. The 2 fold increase in the formation of 8-OH-dG in calf thymus DNA was observed in the cells treated with RWFs in the presence of $H_2O_2$. On the other hand, chrysotile had no effect on the 8-OH-dG formation. 5. RWFs had no effect on the HGPRT point mutation and cell transformation. These results showed that RWFs could induce chromosomal damage, cell division disturbance and oxidative DNA damage in the RWFs treated cells.

  • PDF

Medical Surveillance of Glass Fiber Workers in Korea (유리섬유 제조업체 근로자의 건강장해)

  • Lee, Se-Wi;Kim, Kyoo-Sang;Choi, Jung-Keun;Kim, Yang-Ho;Kang, Seong-Kyu;Choi, Kyuong-Suk;Moon, Young-Hahn
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.2 s.53
    • /
    • pp.187-198
    • /
    • 1996
  • The industrial use of MMMF(man-made mineral fibers), has been increasing, particularly since the banning of most asbestos products. Fibrous minerals can cause health abnormalities currently associated with occupational exposure to glass fiber. This study was conducted to evaluate health risks of glass fiber manufactory workers within the country. We examined questionaries, physical examination including auscultation, chest x-ray, pulmonary function test for 488 male workers, to go through their dermal itching symptoms and respiratory evaluation. we had the results as follows. 1. In 45% of the workers itching had been expressed at their entrance. At that time we was investigating, 18.5% had itching, and most of them complained it when they fall asleep and night. The Sequent itching site is waist and groin, upper and lower extremity in order, and it had been expressed mainly during summer and winter. 2. As the results of ventilatory functions test, 6.0% were obstructive type, 1.0% were restrictive type. So, glass fiber exposures should be controlled or elimination by protective devices in the workplace. 3. The means of FVC, $FEV_1,\;FEV_1%$ were in normal range. As the comparison of ventilatory functions by age groups, MMF was decreased significantly for the group, 50 years old and more than other groups. And the comparison by the serving periods at glass fiber producing factory, MMF was decreased for the workers had worked for $11\sim15$ years. Therefore, MMF be more sensitive index in the evaluation of ventilatory impairments caused by glass fiber workers.

  • PDF

Serum Levels of Alpha-Tocopherol, Vitamin C, Beta-Carotene, and Retinol in Malignant Pleural Mesothelioma

  • Emri, Salih;Kilickap, Saadettin;Kadilar, Cem;Halil, Meltem Gulhan;Akay, Hadi;Besler, Tanju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3025-3029
    • /
    • 2012
  • The aim of this study was to investigate the possible relationship between antioxidant vitamin levels and malignant pleural mesothelioma (MPM). For this purpose, we measured the serum levels of 4 antioxidant vitamins, ${\beta}$-carotene, ${\alpha}$-tocopherol, retinol, and ascorbic acid, in patients with environmentally induced MPM and in healthy controls from one tremolite village (Kureysler), the biggest erionite village (Tuzkoy) and Ankara. A total of 160 subjects were enrolled in the study, 42 (26.3%) diagnosed with MPM and 118 (73.7%) healthy subjects. A comparison was made between the MPM group and three control groups of which two were exposed and one was unexposed to mineral fibers. The study population consisted of 82 males (51%) and 78 females (49%) with a mean of age of $44.8{\pm}14$ years (range; 20-65 years). Lowest levels of ${\beta}$-carotene, ascorbic acid, and ${\alpha}$-tocopherol were found in MPM patients (MPM vs control groups combined, p<0.0001 for each antioxidant vitamin), without any relation to age or sex. There was no significant difference between the antioxidant levels of healthy controls of Tuzkoy and Ankara. In conclusion; our findings suggested an increased risk of MPM being associated with low levels of ${\alpha}$-tocopherol and ascorbic acid in patients with MPM.

Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers (시멘트계 모르타르 매트릭스를 활용한 섬유복합재료 ECC(Engineered Cementitious Composite)의 설계와 시공 성능)

  • Kim, Yun-Yong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • This paper summarizes the design procedure and constructibility of an ECC (Engineered Cementitious Composite), which is a synthetic fiber-reinforced composite produced with the Portland cement-based mortar matrix. This study employs a stepwise method to develop useful ECC in construction field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). To control the rheological properties of the composite, the aggregates and reinforcing fibers were initially selected based on micromechanical analysis and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Separation of Non-Metallic Components in Waste Printed Circuit Boards (WPCBs) using Organic Solvent and Potassium Phosphate Solution (유기용매와 인산칼륨 용액을 이용한 폐 인쇄회로기판에서 비금속성분의 분리)

  • Lee, Jae-Cheon;Jeong, Jin Ki;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.367-371
    • /
    • 2012
  • Waste printed circuit boards (WPCBs) contain valuable metals such as Cu, Ni, Au, Ag, and Pd. For an effective recycling of WPCBs, it is essential to recover the valuable metals. In recent years, recycling processes have come to be necessary for separating noble metals from WPCBs due to an increasing amount of electronic device wastes. However, it is well known that glass reinforced epoxy resins in the WPCBs are difficult materials to separate into elemental components, namely metals, glass fibers and epoxy resins in the chemical recycling process. $K_3PO_4$ as a catalyst in dimethylformamide (DMF) and N-Methyl-2-pyrrolidone (NMP) was used to depolymerize epoxy resins for recovering metallic and non-metallic components from WPCBs. Reactions of WPCBs were carried out at temperatures $160{\sim}200^{\circ}C$ for 2~12 h. The recycled glass fiber from WPCBs was analyzed by thermogravimetric analyzer (TGA) and evaluated the degree of solubility of the epoxy resin for separation efficiencies of the WPCBs.

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.

Studies on Salmonella enteritidis Contamination in Chicken Egg using Confocal Scanning Laser Microscopy (Confocal Scanning Laser Microscopy 를 이용한 계란에서의 Salmonella enteritidis 오염 연구)

  • Jang, Keum-Il;Park, Jong-Hyun;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.771-777
    • /
    • 1999
  • The structural function of three egg membrane layers and cuticle layer, and the effectiveness of 5 film coatings (chitosan, starch, gelatin, dextrin, mineral oil) on the prevention of Salmonella enteritidis penetration was investigated using confocal scanning laser microscopy (CSLM). Diameters of outer membrane fibers, inner membrane fibers and limiting membrane particles in eggshell were $1.5{\sim}7.2$, $0.8{\sim}2.0$ and $0.1{\sim}1.4\;{\mu}m$, respectively and average thicknesses were 10.0, 3.5, $3.6\;{\mu}m$, respectively. Average thickness of cuticle layer was $6.0\;{\mu}m$ and cuticle layer covered $40{\sim}80%$ of total eggshell surface. Average coating films thickness for chitosan, starch, gelatin, dextrin and mineral oil were 2.2, 2.5, 3.9, 3.6 and $5.0\;{\mu}m$, respectively. After immersion process eggshell surface was almost completely covered by coating films. Chitosan coating was most effective among 5 film coatings in inhibiting growth of Salmonella enteritidis. Penetration process of Salmonella enteritidis through eggshell was investigated by multicolor imaging using CSLM and plate counting. Cuticle layer was the most important structure in blocking the penetration. Among 5 film coatings, chitosan showed the best and similar effectiveness with cuticle layer.

  • PDF

Analysis of Nutritional Components in Pleurotus ferulea (아위버섯(Pleurotus ferulea) 영양성분 분석)

  • Hong, Ki-Hyoung;Kim, Byung-Yong;Kim, Hye-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.563-567
    • /
    • 2004
  • Nutritional components, such as approximate compositions, and amino acid, mineral, vitamin, sugar, and fatty acid contents, of artificially cultivated Pleurotus ferulea were analyzed. Contents of carbohydrates, crude lipids, dietary fibers, crude proteins, total amino acids, particularly essential amino acids, minerals, water-insoluble and-soluble vitamins, glucose, and unsaturated fatty acids such as linoleic acid of P. ferulea were higher than those of P. ostreatus and P. eryngii. Results indicate P. ferulea has abundant essential nutrients and thus is good source of functional healthy food.