• Title/Summary/Keyword: mineral exploration

Search Result 571, Processing Time 0.023 seconds

Understanding of Offshore Drilling System and Trend Analysis (해양 시추시스템 구성요소에 대한 이해 및 동향분석)

  • Woo, Nam-Sub;Kwon, Jae-Ki;Park, Jong-Myung;Kim, Sang-Shik;Kim, Young-Ju
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • Offshore drilling refers to a mechanical process where a wellbore is drilled through a seabed. It is typically carried out in order to explore for and subsequently extract petroleum which lies in rock formations beneath the seabed. There are many different type of facilities from which offshore drilling operations take place. These include bottom founded drilling rigs, combined drilling and production facilities either bottom founded or floating platforms, and deepwater mobile offshore drilling units including semi-submersibles and drillships. These are capable of operating in water depths up to 3,000 m. In this paper, we introduce the drilling system, which is mounted on the offshore drilling facilities.

Some case histories to detect underwater buried objects by electrical and magnetic methods (수중 매장물 조사에 응용되는 전기 및 자기 탐사사례)

  • JUNG Hyun Key;Park Yeong-Sue;Lim Mutaek;Rim Hyoungrae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.118-137
    • /
    • 2004
  • Recently underwater geophysical problems for historical relics or UXO's are raised frequently. This study includes the applicabilities and limitations of the recent underwater metal detector and domestic case stories for underwater survey by electrical and magnetic method. Direct or indirect case stories are electrical and vertical magnetic gradiometry surveys beneath Han-river bottom for planning subway tunnel, electrical exploration on lake-bottom, electrical exploration on the tidal flats using high-power transmitter, and borehole three-component magnetic and electromagnetic surveys for detecting the undersea objects. A design of potable real-time, high-speed measurement system using multi-channel array sensors is also introduced here. Further study will be focussed on practical field applications of the fast water-bottom scanning system which is lately required by actual field.

  • PDF

Electrical resistivity monitoring of a scale model experiment for geological $CO_2$ sequestration (전기비저항에 의한 지중저장 이산화탄소 거동관측 모의실험)

  • Park, Mi-Kyung;Jang, Han-Nu-Ree;Kim, Hee-Joon;Wang, Soog-Yun;Lee, Min-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.173-178
    • /
    • 2007
  • Time-lapse electrical resistivity measurements have been made in a scale model experiment for geological $CO_2$ sequestration in aquifer. Three types of $CO_2$ injection are tested in a water tank filled with glass beads. These are $CO_2$ dissolved into filtered tap water, $CO_2$ gas, and mineral oil. The mineral oil is a substitute for liquid phase of supercritical $CO_2$. For reconstructing three-dimensional resistivity images, we measure potential differences at 32 potential dipoles on the top surface of the tank due to two current dipoles on the front and back sides. The resultant resistivity images clearly show the movement of injected $CO_2$ in aquifer.

  • PDF

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.

A Study on the DC Resistivity Method to Image the Underground Structure Beneath River or Lake Bottom (하저 지반특성 규명을 위한 수상 전기비저항 탐사에 관한 연구)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Choi Seong-Jun;Lee Seoung Kon;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.223-235
    • /
    • 2002
  • Since weak Bones or geological lineaments are likely to be eroded, there may develop weak Bones beneath rivers, and a careful evaluation of ground condition is important to construct structures passing through a river. DC resistivity method, however, has seldomly applied to the investigation of water-covered area, possibly because of difficulties in data aquisition and interpretation. The data aquisition having high quality may be the most important factor, and is more difficult than that in land survey, due to the water layer overlying the underground structure to be imaged. Through the numerical modeling and the analysis of a case history, we studied the method of resistivity survey at the water-covered area, starting from the characteristics of measured data, via data acquisition method, to the interpretation method. We unfolded our discussion according to the installed locations of electrodes, ie., floating them on the water surface, and installing them at the water bottom, because the methods of data acquisition and interpretation vary depending on the electrode location. Through this study, we could confirm that the DC resistivity method can provide fairly reasonable subsurface images. It was also shown that installing electrodes at the water bottom can give the subsurface image with much higher resolution than floating them on the water surface. Since the data acquired at the water-covered area have much lower sensitivity to the underground structure than those at the land, and can be contaminated by the higher noise, such as streaming potential, it would be very important to select the acquisition method and electrode array being able to provide the higher signal-to-noise ratio (S/N ratio) data as well as the high resolving power. Some of the modified electrode arrays can provide the data having reasonably high S/N ratio and need not to install remote electrode(s), and thus, they may be suitable to the resistivity survey at the water-covered area.

Detection of Buried Objects and Imaging of Subsurface Resistivity Structure using Loop-Loop EM Methods (소형루프 전자탐사법을 이용한 매설물 탐지 및 지하 전기비저항 영상화)

  • Seol Soon Jee;Song Yoonho;Cho Seong-Jun;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.309-315
    • /
    • 2002
  • Conventional electromagnetic (EM) method using small loops as a source and receiver has been used in detection of conductive buried objects like a metal detector or in qualitative estimation of the subsurface conductivity variation. Recently, however, since detection of buried objects and imaging of the subsurface conductivity distribution in a relatively conductive area are in a high demand for environmental and engineering purposes, the quantitative interpretation technique of EM data is actively studied. In this regard, we introduce a brief principle of EM survey and show an example of the detection of buried conductive material and imaging of the subsurface conductivity distribution based on data measured at a test survey area. Through this study, we show that multi-frequency EM surveys using small loops may be a good solution to give quick and detail information of subsurface in a conductive survey area.

Data Fusion of Mineral Exploration Data Sets and Its Application Using Fuzzy Set Theory (광물자원탐사 자료에 대한 데이터 통합과 그 응용사례)

  • Sungwon Choi
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.537-544
    • /
    • 1999
  • In mineral exploration, there are many data sets which need to be created, processed and analyzed in order to discover a favorable mineralized zone. Recently, with Geographic Information System (GIS), such exploration data sets have been able to be systematically stored and effectively processed using computer technologies. In this study, most exploration data sets were first digitized and then rasterized. Furthermore, they were integrated together by using fuzzy set theory to provide a possibility map toward a target hypothesis. Our target hypothesis is "there is a skarn magnetite deposit in this study" and all fuzzy membership functions were made with respect to the target hypothesis. Test area is extended from 37:00N/l28:30E to 37:20N/I28:45E, approximately 20 km by 40 km. This area is a part of Taebaeksan mineralized areas, where the Sinyemi mine, a skarn magnetite deposit, is located. In final resultant map, high potential or possibility area coincides with the location of the Shinyemi mine. In this regard, we conclude the fuzzy set theory can be effectively applied to this study and provides an excellent example to define potential area for further mineral exploration.

  • PDF

Geochemical Exploration for Tri Le REE Occurrence in Nghe An Province within Northern Vietnam (베트남 북부 네안성 칠레 희토류 산출지의 지구화학탐사)

  • Heo, Chul-Ho;Ho, Tien Chung;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.147-168
    • /
    • 2014
  • The soil geochemical exploration was carried out targeting around Tri Le area far from about 30 km with northwestern direction from Que Phong within Nghe An province. The interval of sampling are horizontal 200 m interval with 23 line and longitudinal 300 m with 10 line, resulting in 228 soil samples. Based on the result of the soil geochemical exploration, the detailed pitting survey was carried out targeting the grid point with high TREO content, resulting in 75 soil samples within 7 pits. The geology of survey area are consisted of Ban Chieng biotite granite complex and granitic gneiss intruding Ban Khang formation comprising of quartz schist and marble. Main mineralization in the study area have the characteristics of occurrence with tin, ruby and REE-bearing monazite and xenotime to be thought as occurring at the alteration zone of granite complex. In order to elucidate the source rock of monazite and xenotime confirmed from heavy sand, soil geochemical exploration was carried out. As a analysis result with ICP-MS on the soil samples from the soil geochemical exploration, total REE oxide content of background amount to about 2 times of crustal abundance, enriching the heavy rare earth(about 2 times) and light rare earth(about 1.5 times). As a analysis result with ICP-MS on the soil samples from the soil detailed pit survey, we only identified outcrop considering as economic weathered granite body at the grid point 1-10 pit among 7 pits. As a synthetic consideration on the soil geochemical exploration and detailed pit survey, we tentatively designated Tri Le area as no promising target for REE. In 2014, we have the plan to carry out the soil geochemical exploration targeting the extended economic REE ore body in Quy Chau as project area from 2011 to 2012.

Low-enthalpy geothermal exploration in Pohang area, Korea

  • Song Yoonho;Lee Seong Kon;Kim Hyoung Chan;Kee Weon-Seo;Park Yeong-Sue;Lim Mu-Taek;Son Jeong-Sui;Cho Seong-Jun;Lim Seong-Keun;Uchida Toshihiro;Mitsuhata Yuji;Lee Tae Jong;Lee Heuisoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.470-475
    • /
    • 2003
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-enthalpy geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating from KORP (Korea Research Council of Public Science & Technology) funding. Surface geologic and geophysical surveys including Landsat TM image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT) and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. By the end of 2003, two test wells of 1 km depth will be drilled and various kinds of borehole survey along with additional MT measurements and sample analysis will follow and then the detailed subsurface condition is to be characterized. Next step would be drilling the production well of 2 km depth and all further steps remain to be determined depending upon the results of the test well studies.

  • PDF

Resource Estimation of Actosity Gold Mineralized Belt, Uzbekistan (우즈베키스탄 악토시티 금광화대 자원량 평가)

  • Chi, Se-Jung;Park, Sung-Won;Kim, In-Joon;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.169-180
    • /
    • 2014
  • Surface geological and trench surveys and drilling exploration (total length, 1,100 m; 9 drill holes) were carried out to secure new Au ore bodies in the area($0.96km^2$) of Actosity gold field, where is located at the western Kuldjuktau mineralized district in the middle territory of Uzbekistan. Several Au ore bodies occurring as tabular or lens shapes with thickness of 0.5~35 m were newly discovered on the outcrops and extended to $N40{\sim}70^{\circ}\;W$ direction with dipping of $70{\sim}90^{\circ}$ SW or NE. Indicated ore resource of gold with Au grade of 0.25~3.52 mg/kg was newly estimated by 2,382 t(gold resource of 2.5 t) as a result of 9 drilling exploration in 2010~2012 from the Actosity gold field. Judging from the ore resources and Au grade of the Actosity gold field, economic potentiality of mining development seems to be low. Because of high possibility to secure new ore resources through more detailed exploration works from the Actosity area, the growth of econonic value will be expected by a mine of middle scale.