• Title/Summary/Keyword: mineral chelate

Search Result 15, Processing Time 0.038 seconds

Effects of Supplementary Mineral Methionine Chelates (Zn, Cu, Mn) on the Performance and Eggshell Quality of Laying Hens

  • Lim, H.S.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1804-1808
    • /
    • 2003
  • A layer experiment was conducted to determine the effects of supplementary methionine chelates (Cu, Zn and Mn), individual or in combination, on laying performance, eggshell quality, gizzard erosion, and IgG level of serum for 8 weeks. Five hundred 96-wk-old force molted ISA Brown layers were assigned to five dietary treatments. Basal diet was formulated to meet or exceed the nutrients requirements listed in NRC (1994). Five experimental diets were control, Zn-methionine chelate (Zn-Met) supplemented, Cumethionine chelate (Cu-Met) supplemented, Zn-Mn-methionine chelate (Zn-Mn-Met) supplemented and Zn-Mn-Cu-Met supplemented diet. Each treated diet was supplemented with respective mineral(s) at the level of 100 ppm in the form of methionine chelate. Egg production was increased by Cu-Met supplementation but decreased by Zn-Met supplementation. Egg weight was significantly (p<0.05) lower in Cu-Met treatment than those of the control and Zn-Met treatment. Specific gravity of eggs and eggshell strength were highest and soft egg production was lowest in Cu-Met treatment. Gizzard erosion index was significantly increased by supplementation of Cu-Met, Zn-Mn-Met or Zn-Mn-Cu-Met. Zinc content in liver significantly increased by Zn-Met, but not by Zn-Mn-Cu-Met treatment. In conclusion, 100 ppm Cu in Cu-Met chelate improved laying performance and eggshell quality but also increased gizzard erosion index. Supplementation of Zn-Met or its combination with other mineral chelates had no beneficial effects on laying performance and eggshell quality.

Dietary Chromium-methionine Chelate Supplementation and Animal Performance

  • Ohh, Sang Jip;Lee, Joon Yeop
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.898-907
    • /
    • 2005
  • Chromium has emerged as an essential trace mineral in nutrition. However, it readily causes toxicity because of slightly excessive dose and/or form of chromium supplement. Therefore, developing a noble form of chromium supplement which is capable of not only an increased availability but also a reduced toxicity has been a critical issue in chromium nutrition. Chromium-methionine chelate has been, so far, one of the latest developments in its kind. Although not much information is available for the chromium-methionine chelate, especially in view of animal performances upon dietary supplementation, several studies indicated chromium methionine chelate could be effective to improve meat quality by increasing muscle mass but decreasing body fat. Highly-graded beef was produced by dietary chromium methionine supplementation during fattening stage of Korean native steers. Body muscle was increased in replace of decreasing body fat in both pig and rat that were dietary supplemented with chromium methionine chelate. However, a pig farm study did not show any significant improvement of body gain upon supplementation of chromium methionine. Immune responses of pig and rat were not always dependent upon chromium form but were varied by species. These results suggest there could be a different mode of responses due to species as well as onset time of dietary supplementation of chromium methionine. It is still early to conclude the bio-efficacy of chromium methionine chelate presumably due to its recent appearance into the field. But the chelate is certainly worth more application to animal since it certainly reduced the application level of dietary chromium.

FT-IR and XRD Analyses of Commercial Methionine-Mineral Chelates

  • Han, Jae-Hong;Chi, Yong-Seok;Shin, Bok-Kyu;Kim, Sang-Kyu;Paik, In-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.8-10
    • /
    • 2006
  • Compositions of methionine-metal chelates have been investigated by FT-IR and XRD studies to elucidate their molecular structures. It was concluded that Copamin and Zincamin contain a high percentage of crystalline products, presumably 2:1 Methionine-Cu or Zn complexes. On the contrary, FT-IR and XRD spectra of Ferramin didn't show any characteristics of the chelate and it was concluded to contain major components of starting $FeSO_4$ and methionine without chelation.

Determination of Co(II) Ion as a 4-(2-Thiazolylazo)resorcinol or 5-Methyl-4-(2-thiazolylazo)resorcinol Chelate by Reversed-Phase Capillary High-Performance Liquid Chromatography

  • Chung, Yong-Soon;Chung, Won-Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1781-1784
    • /
    • 2003
  • Determination of Co(II) ion as a 4-(2-thiazolylazo)resorcinol(TAR) or 5-methyl-4-(2-thiazolylazo)resorcinol(5MTAR) chelate was accomplished by reversed-phase capillary high-performance liquid chromatography (RP-Capillary-HPLC) using a Vydac $C_4$ column and MeCN-water mixture as mobile phase. The effect of change in pH and MeCN percentage of the mobile phase on the retention factor, k and peak intensity were evaluated. It was found that 30% MeCN (v/v) of pH 5.60 or 7.20 was adequate as mobile phase when TAR or 5MTAR is used. Detection limit (D.L., S/N=3) in each case was $2.0\;{\times}\;10^{-7}$M (11.8 ppb) and $3.0\;{\times}\;10^{-7}$ M (17.7 ppb). The Co(II) ion in mineral and waste water was determined with the optimum column and mobile phase.

Trace Mineral Nutrition in Poultry and Swine

  • Richards, James D.;Zhao, Junmei;Harrell, Robert J.;Atwell, Cindy A.;Dibner, Julia J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1527-1534
    • /
    • 2010
  • Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.

Dispersion of Aqueous $Al_2O_3$Suspensions with Electrolytes; Influence of the Counter Ion

  • Cecile Pagnoux;Richard Laucournet;Thierry Chartier;Baumard, Jean-Francois
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.280-285
    • /
    • 2000
  • The electrolyte, $(HO)_2C_6H_2(SO_3Na)_2H_2O $(Tiron), disperses efficiently alumina powder in aqueous media and stable suspensions with 60 vol% solid loading can be prepared. The strong adsorption of this additive is mainly due to the ability of the molecule to form chelate rings with the particle surface but electrostatic interactions between the surface charge and the anionic dispersant strongly influence the amount of Tiron adsorbed. By using a cationic exchange route to substitute the counter ion which neutralizes the sulfonate groups, new molecules of dispersant have been prepared, either with mineral cations as $Li^+,\; Na+^,\; NH_4^\;+$, or with organic cations as counter ion but organic counter ions lead to less to less viscous suspensions than $Na^+$ in particular when the number of carbon atoms of the aliphatic chain increases from 1 to 3.

  • PDF

Effects of dietary copper sources and levels on growth performance, copper digestibility, fecal and serum mineral characteristics in growing pigs

  • Byeonghyeon, Kim;Jin Young, Jeong;Seol Hwa, Park;Hyunjung, Jung;Minji, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.885-896
    • /
    • 2022
  • This experiment was conducted to investigate the effects of three different copper (Cu) sources (one inorganic and two organics) and levels (0, 50, and 100 mg/kg) on the growth performance, Cu digestibility, fecal mineral excretion, serum mineral concentration, jejunal morphology, and serum biochemical profile of growing pigs. A total of 42 male, growing pigs (31.08 ± 1.82 kg) were randomly assigned to seven treatments consisting of one negative control (0 mg/kg of added Cu level) and treatments with copper sulfate (CuSO4), Cu-amino acid complex (CuAA), and Cu-hydroxy-4-methylthio butanoate chelate complex (CuHMB) at 50 and 100 mg/kg each for 28 d. Pigs fed 50 or 100 mg/kg of Cu showed improved (p < 0.05) average daily gain and feed intake. Although Cu excretion decreased (p < 0.01) in pigs fed 100 mg/kg of organic Cu sources compared to those fed CuSO4, there was no difference between the Cu sources in pigs fed 50 mg/kg. However, the apparent total tract digestibility of Cu increased (p < 0.01) in pigs fed organic Cu sources compared with that in pigs fed CuSO4. The addition of CuHMB increased (p < 0.01) serum phosphorus and sulfur concentrations; however, there were no effects of source and level on jejunal morphology and serum biochemical profile. These results suggest that the inclusion (50 mg/kg) of organic Cu sources (CuAA and CuHMB) in the growing pig diet could be beneficial for growth performance and Cu availability and may reduce environmental pollution.

Effects of Feeding Different Chelated Copper and Zinc Sources on Growth Performance and Fecal Excretions of Weanling Pigs

  • Lee, S.H.;Choi, S.C.;Chae, B.J.;Acda, S.P.;Han, Y.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1616-1620
    • /
    • 2001
  • Two feeding trials were conducted to study the effects of different chelated copper and zinc compounds on the performance and fecal excretions of weanling pigs. In Exp. 1, 150 weanling pigs ($L{\times}Y{\times}D$, $12.30{\pm}2.07kg$) were randomly assigned to five dietary treatments: 170 ppm Cu from $CuSO_4$, 85 ppm Cu from Cu amino-chelate (CAC), 170 ppm Cu from CAC, 85 ppm Cu from Cu-Lysine (CL), and 170 ppm Cu from CL. In Exp. 2, 150 weanling pigs ($L{\times}Y{\times}D$, $12.52{\pm}1.80kg$) were randomly assigned to five dietary treatments: 120 ppm Zn from $ZnSO_4$, 60 ppm Zn from Zn-amino-chelate (ZAC), 120 ppm Zn from ZAC, 60 ppm Zn from Zn-Methionine (ZM), and 120 ppm Zn from ZM. In both experiments, pigs were randomly distributed to the treatments following a randomized complete block design on the basis of body weight as the blocking variable. Each experiment was conducted for 28 days. Blood and fecal samples were collected to determine mineral contents as affected by the dietary treatments. There was no difference (p>0.05) in ADG and ADFI among treatments, but F/G was improved (p<0.05) in pigs fed diet with 170 ppm CAC than 85 ppm CL but not different (p>0.05) to the control (170 ppm $CuSO_4$). Regardless of copper source, concentration of Cu in serum and feces were higher in pigs fed diet with 170 ppm Cu than pigs fed diet with 85 ppm Cu (Exp 1). In Exp 2 the ADG was higher (p<0.05) in pigs fed diet with 120 ppm ZM than in pigs fed diets with 120 ppm $ZnSO_4$ and 60 ppm ZAC and ZM. The serum zinc concentration was generally higher (p<0.05) in pigs fed diet with organic source than the control group ($ZnSO_4$). Also, there was a trend towards a decrease in fecal excretions of zinc when dietary zinc level was low. The efficacy of the two chelated copper and zinc sources is similar in terms of growth performance. The fecal excretions for Cu and Zn could be reduced in pigs fed low level of these minerals using organic sources.

Effects of Supplementary Copper Sources (Cu Sulfate, Cu-Methionine, Cu-Soy Proteinate) on the Performance Broiler Chickens (구리 공급원들(Cu Sulfate, Cu-Methionine, Cu-Soy Proteinate)의 첨가가 육계의 생산성에 미치는 영향)

  • Lee, Mun-Ku;Kim, Chan-Ho;Shin, Dong-Hun;Jung, Byoung-Yun;Paik, In-Kee
    • Korean Journal of Poultry Science
    • /
    • v.38 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • This study was conducted to investigate the effects of dietary supplementation of Cu-sulfate, Cu-methionine chelate (Cu-Met) and Cu-soy proteinate (Cu-SP) on the performance, blood parameters and mineral contents of muscle. It was conducted with a total of 1,000 one d old broilers chickens (Ross$^{(R)}$) which were assigned to four dietary treatments; Control, Cu sulfate (200 ppm Cu as $CuSO_4{\cdot}5H_2O$), Cu-Met (200 ppm Cu as Cu-methionine chelate), Cu-SP (200 ppm Cu as Cu-soy proteinate). There were significant differences (p<0.05) among treatments in weight gain. Weight gain of Cu treated groups were higher than the control during 3~5 wk. There were significant differences (p<0.05) among treatments in feed intake during 0~3 wk. Cu-Met was significantly (p<0.05) lower than the control but the differences among Cu treatments were not significant. There were significant differences (p<0.05) among treatments in feed conversion rate (FCR). Cu treated groups were lower than the control during the whole period. Production efficiency factor (PEF) was significantly higher (p<0.01) in Cu treated groups than the control. Nutrient availabilities of diets were not significantly different among the treatments. The count of white blood cell (WBC) and eosinophil (EO) were lower in Cu-SP treatment than in the control. Copper concentration in the liver was significantly (p<0.01) higher in Cu treated groups than the control. Zinc concentration in the breast and wing muscle was lower in Cu treated and that of leg muscle was higher in Cu-Met than the control. The result of this experiment showed that Cu supplementation at the level of 200 ppm as Cu sulfate, Cu-Met and Cu-SP improves weight gain (4~5 wk), FCR and PEF. Differences among Cu sources were not significant.