• Title/Summary/Keyword: mine soils

Search Result 244, Processing Time 0.028 seconds

A Comparison on the Effect of Stabilization Methods for Rice Paddies contaminated by Heavy Metal (중금속 오염 농경지 토양의 안정화 처리공법 효과 비교)

  • Yu, Chan;Yun, Sung-Wook;Park, Jin-Chul;Lee, Jung-Hoon;Choi, Seung-Jin;Choi, Duck-Yong;Yi, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.819-835
    • /
    • 2009
  • In order to investigate the field application of selected stabilization methods(cover soil method, surface and total interval treatment of embankment method) on rice paddies contaminated by heavy metals, column test was carried out with heavy metal-contaminated soils collected from rice paddies around abandoned mine site. Columns were made by acrylic and filled with untreated soil, treated soil mixed with amendments(lime stone and steel refining slag) and uncontaminated cover soil according to the design report. Distilled water was discharged into the columns with the velocity of 1 pore volume/day. During test, pH, EC, and heavy metal concentration were measured in the regular term. The column test result showed that the selected stabilization methods were effective remediation method to stabilize heavy metals in paddy soils, but it was also expected that application of surface treatment methods was required the careful observation on pH variation due to the lowest increment.

  • PDF

A Study on Chemical Speciations and Leaching Potential of Heavy Metals in Polluted Wastes Soils

  • Kim Hee-Joung;Yang Jae-E;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2005
  • Fractional compositions and leaching potentials of Cd, Cu and Zn were investigated in the soils which had been disposed with the metal processing wastes, tungsten mine tailings and low quality coal mine area. Total concentrations of metals in these soils were higher than in non-polluted paddy and upland soils. Fractions of Cd, Cu and Zn were mostly reducible, organic and residual forms, but varied with origins of wastes. Residual fraction was a predominant form in the nonpolluted soils. Leaching potentials of metals were higher in polluted soils than in non-polluted soils. Metals leached were higher at pH 4.0 than 7.0 and increased with the duration time. After 25 to 35 hrs, metals released from soils reached a pseudoequilibrium. Leaching potential of metals in non-polluted soils was low due to high percentage of residual fractions.

Geochemical Enrichment and Migration of Environmental Toxic Elements in Stream Sediments and Soils from the Samkwang Au-Ag Mine Area, Korea (삼광 금-은광산 일대의 하상퇴적물과 토양내 함유된 독성원소의 지구화학적 부화와 이동)

  • Lee, Chan Hee;Lee, Byun Koo;Yoo, Bong-Cheal;Cho, Aeran
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 1998
  • Dispersion, migration and enrichment of environmental toxic elements from the Samkwang Au-Ag mine area were investigated based upon major, minor and rare earth element geochemistry. The Samkwang mine area composed mainly of Precambrian granitic gneiss. The mine had been mined for gold and silver, but closed in 1996. According to the X-ray powder diffraction, mineral composition of stream sediments and soils were partly variable mineralogy, which are composed of quartz, orthoclase, plagioclase, amphibole, muscovite, biotite and chlorite, respectively. Major element variations of the host granitic gneiss, stream sediments and soils of mining and non-mining drainage, indicate that those compositions are decrese $Al_2O_3$, $Fe_2O_3$, MgO, $TiO_2$, $P_2O_5$ and LOI with increasing $SiO_2$ respectively. Average compositional ranges (ppm) of minor and/or environmental toxic elements within those samples are revealed as As=<2-4500, Cd=<1-24, Cu=6-117, Sb=1-29, Pb=17-1377 and Zn=32-938, which are extremely high concentrations of sediments from the mining drainage (As=2006, Cd=l1, Cu=71, Pb=587 and Zn=481 ppm, respectively) than concentrations of the other samples and host granitic gneiss. Major elements (average enrichment index=6.53) in all samples are mostly enriched, excepting $SiO_2$, $Na_2O$ and $K_2O$, normalized by composition of host granitic gneiss. Rare earth element (average enrichment index=2.34) are enriched with the sediments from the mining drainage. Minor and/or environmental toxic elements within all samples on the basis of host rock were strongly enriched of all elements (especially As, Br, Cu, Pb and Zn), excepting Ba, Cr, Rb and Sr. Average enrichment index of trace elements in all samples is 15.55 (sediments of mining drainage=37.33). Potentially toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) of the samples revealed that average enrichment index is 46.10 (sediments of mining drainage=80.20, sediments of nonmining drainage=5.35, sediments of confluent drainage=20.22, subsurface soils of mining drainage=7.97 and subsurface soils of non-mining drainage=4.15). Sediments and soils of highly concentrated toxic elements are contained some pyrite, arsenopyrite, sphalerite, galena and goethite.

  • PDF

Distiribution of Metals and Cyanide in Soils and Acid leachate Occurrence around the Daduck mine (다덕광산 주변 토양에서의 금속 및 시안의 분포와 산성침출수 생성)

  • 정영욱;민정식;김인기;김옥환;이승길;우종한;최광호
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.39-47
    • /
    • 1997
  • Geochemical study was carried out to find out the distribution of metals and cyanide in soil in the vicinity of the abandoned Daduck mine and the reason for acid mine drainage occurrence in the tailings impoundment. Chemical analysis showed that content of As in soil around tailings exceeded 15mg/kg, Korean standard of soil contamination in the farm land. That means the contamination of soil by As is due to input of tailings. According to total decomposition of tailings, As, Cd, Cu, Pb, Zn and S were highly concentrated in tailings. However the water in tailings impoundment was changed to acidic and contaminated by metals and sulfate because the tailings in the top of the tailings impoundment had been oxidized. Acid mine drainage contaminated the water course in the vicinity of the paddy soils. The proper measures are required to prevent contamination of the soil and water in the vicinity of the Daduck mine.

  • PDF

Geochemistry, Secondary Contamination and Heavy Metal Behavior of Soils and Sediments in the Tohyun Mine Creek, Korea (토현광산 수계에 분포하는 토양과 퇴적물의 지구화학적 특성, 이차적 오염 및 중금속의 거동)

  • 이찬희;이현구;윤경무
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2001
  • Environmental pollution of the Tohyun mine creek area was investigated on the basis of geology, mineralogy and geochemistry. In soils and sediments of the mine area, ${Al_2}{O_3}/{Na_2O}$ and ${K_2}O/{Na_2}O$ ratios are partly negative correlation against ${SiO_2}/{Al_2}{O_3}$, respectively. Geochemical characteristics of some trace and rare earth elements such as V/Ni, Ni/Co, La/Ce, Th/Yb, Th/U, La/Th, ${La_N}/{Yb_N}$, La/Sc and Sc/Th are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. These results suggest that sediments source of the host shale around the mine area could be originated by basic to intermediate igneous rocks. Mineral compositions of soil and sediment near the mine area were partly variable mineralogy, which are composed of quartz, mica, feldspar, chlorite, clay minerals and some pyrite. Soils and sediments with highly concentrated heavy minerals, gravity separated mineralogy, are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various kinds of hydroxide minerals on the polished sections. As normalized by bed rock composition, average enrichment indices of major elements in sediments, precipitates, farmland soils and paddy soils are 1.0, 1.7, 0.9 and 0.8, respectively. Maximum concentration of environmental toxic elements in the mine creek are detected with Ag = 186 ppm, As = 17,100 ppm, Bi = ]27 ppm, Cd = 77 ppm, Cu = 12,299 ppm, Pb = 8,897 ppm, Sb = 1,350 ppm, W = 599 ppm and Zn = 12,250 ppm, which are increasing with total FeO increasing, and extremely high concentrations of surface sediments and precipitates near the waste rock dump. These toxic elements (As, Bi, Cd, Cu, Pb, Sb, W and Zn) of the samples, normalizing by host rock concentration, revealed that average enrichment index is 106.0 for sediments, 279.6 for precipitates, 3.5 for farmland soils and 1.6 for paddy soils. However, on the basis of EPA values, enrichment indices of all the samples are 40.7, 121.4, 1.3 and 0.6, respectively.

  • PDF

Size Distributions of Amphiboles in Soils from a Closed Asbestos Mine, Jecheon, Chungcheongbuk-do, Korea (충청북도 제천시 폐석면광산 주변 토양에서 검출되는 각섬석의 크기 분포)

  • Kwon, Jiwoon;Choi, Sung Won;Kim, Hyunwook
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.497-505
    • /
    • 2014
  • This study is for discrimination between asbestiform and non-asbestiform based on size characteristics of tremolite-actinolite fibers in soils from a closed asbestos mine, Jecheon, Chungcheongbuk-do, Korea. Soils and tremolite asbestos rocks were collected from a closed asbestos mine area. The dimensions of fibers with minimum $5{\mu}m$ in length and 3:1 in aspect ratio were measured using transmission electron microscopy (TEM) and compared to the known tremolite populations ranging from asbestiform to non-asbestiform. The geometric means of width of soils, asbestos rocks and National Institute for Standard and Technology (NIST) and Health and Safety Laboratory (HSL) reference samples were $1.2{\mu}m$, $0.3-0.6{\mu}m$, $1.3{\mu}m$ and $0.2{\mu}m$, respectively. The geometric means of aspect ratio of soils, asbestos rocks and NIST and HSL reference samples were 7.3, 13.7-30.1, 7.2 and 37.8, respectively. The population of tremolite-actinolite fibers from soils compared to known asbestiform and non-asbestiform tremolite was lack of thin and high aspect ratio fibers. Upper results suggest that tremolite-actinolite fibers in soils cannot be classified into a commercial grade asbestos. The tremolite-actinolite fibers do not mainly appear to be the result of contamination from distance asbestos sources by wind. For the management and control of asbestos in soils, size distributions of amphiboles should be incorporated into asbestos survey results of soils.

Risk Assessment of Heavy Metals in the Vicinity of the Abandoned Metal Mine Areas (폐금속광산지역 중금속의 위해성 평가)

  • Lee, Jin-Soo;Kwon, Hyun-Ho;Shim, Yon-Sik;Kim, Tae-Heok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.97-102
    • /
    • 2007
  • An environmental survey from three abandoned metal mine areas was undertaken on to assess the risk of adverse health effects on human exposure to heavy metals influenced by past mining activities. Tailings contained high concentrations of heavy metals may have a impact on soils and waters around the tailing piles. In order to perform the human risk assessment, chemical analysis data of soils, rice grains and waters for As, Cd, Cu and Pb have been used. The HQ values for heavy metals via the rice consumption were significantly higher compared with other exposure pathways in all metal mine areas. The resulting HI values in three mine areas were higher than 9.0, and their toxic risk due to rice ingestion was strong in these mine areas. The cancer risk of being exposed to As by the rice consumption from the A, B and C mine areas was $5.1\;{\times}\;10^{-3}$, $6.8\;{\times}\;10^{-3}$ and $3.1\;{\times}\;10^{-3}$, respectively. The As cancer risk via the exposure pathway of rice ingestion from these mine areas exceeds the acceptable risk of 1 in 10,000 set for regulatory purposes. Thus, the daily intakes of rice by the local residents from these mine areas can pose a potential health threat if exposed by long-term As exposure.

Environmental Contamination and Bioavailability Assessment of Heavy Metals in the Vicinity of the Dogok Au-Ag-Cu Mine (도곡(Au-Ag-Cu)광산 주변지역의 중금속 원소들의 환경오염특성 및 생체흡수도 평가)

  • Lee Sung-Eun;Lee Jin-soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.135-142
    • /
    • 2005
  • In order to investigate the contamination level and seasonal variation of heavy metals and evaluate the bioavailability of toxic elements, environmental geochemical survey was undertaken at the Dogok Au-Ag-Cu mine area. The main pollution sources in the area were suggested as tailings, mine waste materials and mine water. Elevated levels of $140{\cal}mg/{\cal}kg{\;}As,{\;}107{\cal}mg/{\cal}kg{\;}Cd,{\;} 3017{\cal}mg/{\cal}kg{\;}Cu,{\;}12926{\cal}mg/{\cal}kg{\;}Pb,{\;}9094{\cal}mg/{\cal}kg$ Zn(before rainy season) were found in mine tailings. Concentrations of heavy metals in farmland soils exceeded normal level in nature soil (Bowen, 1979). The highest level of heavy metals was found in water samples near the mine tailing dumps regarded as a main pollution source of toxic elements in the area. These concentrations decreased to downstream due to the effect of dilution. From the results of sequential extraction analyses for tailings and soils, non-residual forms of heavy metals were found, which indicate the contamination to be progressing by continuing weathering and oxidation. Cadmium and Zn would be of the highest mobility in all samples. The bioavailability of Cd, Cu, Zn and As using SBET analysis from paddy soils was $53.3{\%},{\;}46.5{\%},{\;}41.0{\%}$ and $37.0\%$, respectively. The farmland soil sample(S3) showed the highest total concentration and bioavailability of heavy metals.

Exposure and human risk assessment of toxic heavy metals on abandoned metal mine areas

  • Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.515-517
    • /
    • 2003
  • In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influenced by past mining activities, environmental geochemical surveys were undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn, Okdong Cu-Pb-Zn, Songcheon Au-Ag, Dongjung Au-Ag-Pb-Zn, Dokok Au-Ag-Cu and Hwacheon Au-Ag-Pb-Zn mines). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil, the Songcheon and the Dongjung mines. High concentrations of heavy metals except As were also found in tailings from the Okdong, the Dokok and the Hwacheon mines. These significant concentrations can impact on soils and waters around the tailing dumps. Risk compounds deriving from mine sites either constitute a toxic risk or a carcinogenic risk. The hazard index (H.I.) of As in the Dongil, the Okdong, the Songcheon and the Hwacheon mine areas was higher value more than 1.0. In the Okdong and the Songcheon mine areas, H.I. value of Cd exceeded 1.0. These values of As and Cd were the highest in the Songcheon mine area. Therefore, toxic risks for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas. The cancer risk for As in stream or ground water used for drinking water from the Songcheon, the Dongil, the Okdong, the Dongjung and the Hwacheon mine areas was 3E-3, 8E-4, 7E-4, 2E-4 and 1E-4, respectively.

  • PDF

Evaluation of Stabilization of Arsenic in Contaminated Soil Taken from Farmland Near Abandoned Metal Mine (폐금속광산 주변 오염 농경지에서 비소의 안정화 효율 평가)

  • Han, Su Ho;Jung, Myung Chae;Kim, Jeong Wook;Yoon, Kyung Wook;Min, Seon Ki;Park, So Yeon;Sim, Ki Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2021
  • This study has evaluated the stabilization of As contaminated paddy and cultivated soils by pot experiments for rice and lettuce. Various ratios of limestone (L) and steel slag (S) were mixed with the soils in each pot. The soils were taken from before and after pot experiments, and analyzed for As extracted by sequentially (Wenzel method) and totally (aqua regia method).. Paddy soils amended with L (0.5%) and L (1.0%) + S (1.0%) showed increasing fraction 2 (specifically bound As) compared with control soil. Arsenic concentrations in rice grain grown on the amended soils decreased 14% and 12% compared with those on the control soil, respectively. According to sequential extraction of As in cultivated soils, the fractions 1~3 were decreased due to stabilization of As by the soil amendment, especially for S (1.0%), S (3.0%) and L (1.0%) + S (1.0%). In addition, relatively low As concentrations were found in lettuce grown on amended soils with L (0.5%) and L (1.0%) + S (1.0%). Therefore, it can be suggested that soil amendments with L (0.5%) or L (1.0%) + S (1.0%) were suitable for enhancing stabilization of As in the study area.