• Title/Summary/Keyword: mine area

Search Result 568, Processing Time 0.025 seconds

Application of Fuzzy Reasoning Method for Prediction of Subsidence Occurrences in Abandoned Mine Area (폐광산 지역에서의 지반침하예측을 위한 퍼지추론기법 적용 연구)

  • Choi, Sung-O.;Kim, Jae-Dong;Choi, Gwang-Su
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2009
  • Many old domestic mines were excavated with the room and pillar method or the sublevel caving method and they involve the great possibility of surface subsidence, especially in the shallow depth mines. In most of these cases, the mine roadways and openings are very irregular in shape and the information about the local geology is uncertain. Consequently it is not simple to standardize the estimation method for the possibility of subsidence, especially the sinkhole subsidence. In this study, the fuzzy reasoning method has been applied for development of estimating the possibility of subsidence occurrence in abandoned mine area. This method has the advantage in producing the reliable estimation results with a simple performance procedure even when the precise information on the local geology and mining conditions is rare. For the verification of applicability of this method, the developed method has been applied to Kumho mine in Bonghwa, Kyungbook province and the Choong-ju mine in Iryu, Choongbook province where the surface subsidence occurred already.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

Numerical Analysis on Effective Countermeasure for Ground Subsidence due to Mining Hazard (광해로 인한 지반침하의 효율적인 보강방안에 관한 수치해석)

  • Hong, Won-Pyo;Lee, Jae-Ho;Hur, Se-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • When the structure such as roadway, railway are constructed on abandoned coal mine area, the countermeasure to prevent settlements is necessary. In this study, numerical analyses are performed to evaluate the effect of the various countermeasures. As a results, the method which is filling the coal mine is more effective than that of reinforcing the ground above the coal mine. The ground settlement decreases hyperbolically with increasing the filling ratio of the coal mine. Also, the relationship between the filling ratio and the settlement reduction ratio is discussed precisely.

  • PDF

Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine - With special reference to geochemical environment around the Imgok Creek in the Gangreung Coal Field - (폐석탄광 주변 지구화학적 환경의 중금속 오염 평가 - 강릉탄전 임곡천 일대를 중심으로 -)

  • Chon, Hyo-Taek;Kim, Ju-Yong;Choi, Si-Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.499-508
    • /
    • 1998
  • The Imgok Creek is located in the Gangreung coal field, which has been known that sulfides are more abundant than other coal fields in Korea, and it has been severly contaminated by acid mine drainage (AMD) discharging from the abandoned coal mines, such as the Youngdong, the Dongduk and the Waryong coal mines. The purposes of this study are to synthetically assess the contamination of natural water, stream sediment and cultivated soils, and to provide the basic data for AMD treatment. Geochemical samples were collected in December, 1996 (dry season) and April, 1997 (after three day's rainfall). TDS of the Youngdong mine water was remarkably higher than those of other mine waters. In the Imgok Creek, concentrations of most elements, except Fe decreased with distance by dilution caused by the inflow of uncontaminated tributaries. From the results of NAMDI and $I_{geo}$ calculation, the Youngdong coal mine was the main contamination source of the study area. Groundwater pollution was not yet confirmed in this study and the paddy and farm land soils were also not yet contaminated by mining activity based on the pollution index ranging from 0.27 to 0.47.

  • PDF

Study on the Treatment, Utilization and Control of the Acid Mine Drainage for Colliery - An on-site test on the Applicability of a Korean-type Prototype for Mine Drainage Purification- (석탄광의 산성갱내배수 처리.이용.제어에 관한 연구 -한국형 특수갱배수 정화장치 시작품 현지적용실험-)

  • 이춘택
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.4
    • /
    • pp.11-21
    • /
    • 1986
  • Mine drainage from coal mines is mostly acidic, polluted and/or contaminated, even if its quantity has increased substantially during recent days. This causes two kinds of problems arising at mining districts; one is the environmental disruption and the other is insufficient water supply for living, employee's bathing and industrial purposes. In order to mitigate the aforementioned problems, a specific equipment of Korea type for mine drainage purification has been developed and its prototype manufactured, followed by its applicability tests implemented at mine site. The results of the tests indicates that the new equipment developed is much lower than and economical compared to, other existing neutralization facilities at home and abroad in capital investment at installation stage, the consumption of neutralizing chemicals at operation stage and the requirements of installation site. Whangji area where the prototype water treatment equipment is installed has been sustaining a short supply of usable water, especially in dry seasons and supplementing about 40㎥ of water brought from a location farther than 4km in distance to meet water requirements. The prototype water treatment equipment is however considered capable of providing compressor cooling water in sufficient amount from winter season In the future.

  • PDF

Geologic Report of the Second Yeonhwa Mine, Kangwon Province, Korea (제이연화광산(第二蓮花鑛山)의 지질광상(地質鑛床)에 대(對)하여)

  • Han, Kab Soo
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.211-217
    • /
    • 1972
  • The Second Yeon Hwa Mine which belongs to a so called Lead-Zines Belt Area in the central east Korea is located at about 10 km northeast of the Seogpo railway station on Yeongdong Line. The exploitation of the mine started in June, 1969 and furnished the machinary ore dressing plant in November, 1971. The current monthly production of rude ore is 15,000 meteric tons. The results of the study on the lead-zinc-copper deposits of the Second Yeonhwa mine are summerized as follows: (1) main ore deposits of the mine are localized in the Pungchon Limestion formation of Cambrian age, (2) related ingneous rock with ore deposits is granite porphyry, which distributed in NS and $N50^{\circ}W$ trend, (3) ore solution ascended along the $N50^{\circ}W$ trend which represents folding axis and fault plane and mineralized selectively in the limestone formation. (4) high grade ore deposits are localized in concave and convex boundaries of granite porphyry, and hanging walls of shale bed ($P_2S$ shale bed) in Pungchon Limestone formation and (5) skarn minerals are consisted of garnet, hedenbergite, diopside, and sulfide minerals are composed of zincblenede, galena, phyrhotite, pyrite and some amount of chalcopyrite and arsenopyrite.

  • PDF

Geochemical Study on Heavy Metal Pollution of Plants at Dalseong Abandoned Mine (달성폐광산 주변 식물의 중금속 오염에 대한 지화학적 연구)

  • Lee, Jae Yeong;Lee, In Ho;Kim, Suk Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.223-233
    • /
    • 1998
  • The environments in the vicinity of the Dalseong mine has been much contaminated by heavy metals related to CuW ore deposit, which is of hydrothermal pipe type mineralized by quartz monzonite in the andesitic rocks. Chalcopyrite and wolframite are major ore minerals and sphalerite, galena and others are associated. To investigate the contamination of heavy metals in plants, samples of plants and soils were analysed by ICP for Fe, Mn, Cu, Pb, Zn, Ni, Co, Cd and Cr. Most of ore-related heavy metals are anomalously high in plants and soils, which were contaminated by the development of Taehan Tungsten Mining Company. The mine produced 48,704 tons (M/T) of 4 wt.% Cu and 1,620 tons (S/T) of 70 wt.% of $WO_3$ during active mining activity from 1961 to 1971 but was closed in 1975. Wild plants growing at the mine area may be used to remove heavy metals form soils, which cause contaminations of plants, stream waters and groundwaters in the vicinity of the mine.

  • PDF

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

Sequential Extraction of Heavy Metals in the Vicinity of the Oksung Cu-Zn Mine (옥성(玉城) 동(銅)-아연(亞鉛) 광산(鑛山) 주변(周邊) 토양중(土壤中) 중금속(重金屬)의 형태별(形態別) 함량(含量))

  • Cho, Jae-Young;Kim, Euen-Hyuk;Han, Kang-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.446-452
    • /
    • 2000
  • This study was carried out to investigate the effect of mine activity on paddy fields, agricultural water, and plants in the ruined Oksung Cu-Zn mine area. Soil samples collected from paddy fields adjacent to the Cu-Zn mine sites were sequentially extracted and determined the contents of heavy metals such as Cd, Zn, Cu, Pb, Cr and Ni. Distribution of exchangeable heavy metals in soils was 30.2% of Cd, 11.3% of Zn, 2.2% of Cu, 4.6% of Cr, 0.6% of Pb and 3.9% of Ni. Water soluble heavy metals were only detected with Zn. The contents of heavy metals in water collected from the mine were 0.01 of Cd, 27.35 of Zn, 4.86 of Cu, 1.04 of Pb, 0.03 of Cr and $0.08mg\;L^{-1}$ of Ni. while the contents in waler collected out of the mine were 16.67 of Zn, 0.59 of Cu, 0.49 of Pb, 0.05 of Cr and $0.06mg\;L^{-1}$ of Ni. On the other hand, agricultural water near mine area were 1.26 of Zn, 0.05 of Cu, 0.05 of Pb and $0.02mg\;L^{-1}$ of Ni. Both Cd and Cr were not detected in the agricultural water.

  • PDF

A Case Study on Predicting and Analyzing Inflow Sources of Underground Water in a Limestone Mine (석회석 광산 갱내수 유입원 예측분석 사례연구)

  • Minkyu Lee;Sunghyun Park;Hwicheol Ko;Yongsik Jeong;Seon-hee Heo
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.388-398
    • /
    • 2023
  • The changes in groundwater flow due to mining development act as a contributing factor to major issues such as ground subsidence, strength reduction and collapse. For the sustainable mining development, measures for dealing with fluctuations in seasonal underground water inflow, power losses, pump damage, and unexpected increases in inflow must be put in place. In this study, the aim is to identify the causes of underground seepage through the examination of hydrological connectivity between the study area and nearby limestone mine. A tracer tes for assessing subsurface connectivity has been planned. A variety of tracers, such as dyes and ions, were applied in lab test to select the optimal tracer material, and a hydrological model of the study area was implemented through field test. Finally, the hydrological connectivity between the external stream and underground water in the mine was analyzed.