• Title/Summary/Keyword: milling tool

Search Result 681, Processing Time 0.021 seconds

A Study on Acoustic Signal Characterization for Al and Steel Machining by Audio Deep Learning (오디오 딥러닝을 활용한 Al, Steel 소재의 절삭 깊이에 따른 오디오 판별)

  • Kim, Tae-won;Lee, Young Min;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.72-79
    • /
    • 2021
  • This study reports on the experiment of using deep learning algorithms to determine the machining process of aluminium and steel. A face cutting milling tool was used for machining and the cutting speed was set between 3 and 4 mm/s. Both materials were machined with a depth to 0.5mm and 1.0mm. To demonstrate the developed deep learning algorithm, simulation experiments were performed using the VGGish algorithm in MATLAB toobox. Downcutting was used to cut aluminum and steel as a machining process for high quality and precise learning. As a result of learning algorithms using audio data, 61%-99% accuracy was obtained in four categories: Al 0.5mm, Al 1.0mm, Steel 0.5mm and Steel 1.0mm. Audio discrimination using deep learning is derived as a probabilistic result.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

Experimental Cutting Performance Evaluation of LGP using Vibration Assisted High Speed Shaping (도광판의 고속 진동절삭 특성에 관한 연구)

  • Kang, DongBae;Ahn, JungHwan;Son, SeongMin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1871-1878
    • /
    • 2014
  • PMMA (Polymethyle-methacrylate) optical components have recently been increasingly used as one of the important part of the high precision equipments. This research presents comparatively the surface preparation of light incident plane, LIP (Light Incident Plane) of LGP (Light Guide Panel) by end milling, high speed shaping, and vibration assisted high speed shaping. From several experiments, the results show that the surface quality was improved in high speed shaping and the vibration assisted HSS show not only decreasing waviness and breakage also raising the straightness property. For applying high speed shaping and vibration assisted HSS, an additional tool post was developed and experimentally used.

Improvement of a Decision Tree for The Rehabilitation of Asphalt Pavement in City Road (도심지 아스팔트 포장의 유지보수공법 의사결정 절차 개선)

  • Park, Chang Kyu;Kim, Won Jae;Kim, Tae Woo;Lee, Jin Wook;Baek, Jong Eun;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.27-37
    • /
    • 2018
  • PURPOSES : The objective of this study is to develop a pavement rehabilitation decision tree considering current pavement condition by evaluating severity and distress types such as roughness, cracking and rutting. METHODS : To improve the proposed overall rehabilitation decision tree, current decision tree from Korea and decision trees from other countries were summarized and investigated. The problem when applying the current rehabilitation method obtained from the decision tree applied in Seoul was further analyzed. It was found that the current decision trees do not consider different distress characteristics such as crack type, road types and functions. Because of this, different distress values for IRI, crack rate and plastic deformation was added to the proposed decision tree to properly recommend appropriate pavement rehabilitation. Utilizing the 2017 Seoul pavement management system data and considering all factors as discussed, the proposed overall decision tree was revised and improved. RESULTS :In this study, the type of crack was included to the decision tree. Meanwhile current design thickness and special asphalt mixture were studied and improved to be applied on different pavement condition. In addition, the improved decision tree was incorporated with the Seoul asphalt overlay design program. In the case of Seoul's rehabilitation budget, rehabilitation budget can be optimized if a 25mm milling and overlay thickness is used. CONCLUSIONS:A practical and theoretical evaluation tool in pavement rehabilitation design was presented and proposed for Seoul City.

Straightness Measurement Technique for a Machine Tool of Moving Table Type using the Profile Matching Method (이동테이블형 공작기계에서의 형상중첩법을 이용한 진직도 측정기술)

  • 박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.400-407
    • /
    • 1995
  • The straightness property is one of fundamental geometric tolerances to be strictly controlled for guideways of machine tools and measuring machines. The staightness measurement for long guideways was usually difficult to perform, and it needed additional equipments or special treatment with limited application. In this paper, a new approach is proposed using the profile matching technique for the long guideways, which can be applicable to most of straghtness measurements. An edge of relativelly sthort length is located along a divided section of a long guideway, and the local straightness measurement is performed. The edge is then moved to the next section with several positions overlap. After thelocal straightness profile is measured for every section along the long guideway with overlap, the global straightness profile is constructed using the profile matching technique based on theleast squares method. The proposed techinique is numerically tested for two cases of known global straightness profile arc profile and irregular profile and those profiles with and without random error intervention, respectively. When norandom errors are involved, the constructed golval profile is identical to the original profile. When the random errors are involved, the effect of the number of overlap points are investigated, and it is also found that the difference between the difference between the constructed and original profiles is very close to the limit of random uncertainty with juist few overlap points. The developed technique has been practically applied to a vertical milling machine of moving table type, and showed good performance. Thus the accuracy and efficiency of the proposed method are demonstrated, and shows great potential for variety of application for most of straightness measuirement cases using straight edges, laser optics, and angular measurement equipments.

  • PDF

A Study On Prediction Model of Cutting Conditions for Draft Angle Control (마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구)

  • Cho, Ji-Hyun;Song, Byeong-Uk;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.

Design and Performance Test of Locking Curved-Nut (풀림방지 Curved-Nut 설계 및 성능 시험)

  • Cha, Min Cheol;Kang, Ho Sung;Kim, Do Yeop;Lee, Suk Yong;Jeong, Hui Jong;Lee, Eung Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.199-204
    • /
    • 2017
  • Many types of locking nut are commercializing in the various industries where has heavy vibration. Because nut's loosing causes a serious accident. But the most locking nuts are too expensive as the complicate manufacturing process. In this study, we design the new type of locking nut, "Curved-Nut" that is relatively simple making process. We study a relation between the elastic energy and the nut loosing mechanism. So it is analysed, the elastic energy of Curved-Nut comparing with the locking test. The Curved-Nut was manufactured on the commercial nut using a milling tool with horizontal cutting, one or two time under the nut. As the result, the more elastic energy the more prevent the loosing of the nut. We verified the performance of the loosing nut using the vibration testing equipment (NAS3350).

CAD/CAM system for Cam (Cam의 CAD/CAM)

  • Kim, Ki Dae
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.228-238
    • /
    • 1991
  • Cam plays very important roles due to continuous requirement for the high-speed and automation of the machinery. A large number of studies of cam curve were carried out by many researchers, and CNC milling and machining center for manufacturing cam have been widely used recently. The purpose of this study was to develop a CAD/CAM system for cam using QuickBasic language in 16-bit PC for application of cam design and manufacturing. Results obtained were as follows : 1. It was possible to input data by entering cam angle and its corresponding R, from 0 to 360 deg. of cam angle. The tediousness at entering data was minimized because of the same data format for both cylindrical cam and disc cam, and free format used for data file. 2. It was possible to design cam by choosing only the number of cam curve because of developing the CAD/CAM program with dimensionless method of cam curves including widely used 19 kinds. After selecting the number of the cam curve, the CAD/CAM system automatically shows the characteristics of cam motion enough to help a designer to decide : displacement, velocity, acceleration and jerk. 3. It was possible to execute, in an efficient way, both the cam profile synthesis and the generation of NC program for CNC machining center by using the input data. 4. This NC program generated by the CAD/CAM system developed here, was evaluated as positive in relation with actual manufacturing experiments and thought to be useful in its application without any modification. It can be said that this CAD/CAM system could be used by the beginners to design and manufacture the cam automatically as the system consists of very simple dialogue methods. In addition, self-developed QuickBasic would be would used as a basic tool for further stuides in this area of research, together with application.

  • PDF

Structural Design of a Dental Implant (2): Test Drafting and Manufacturing (치과용 임플란트 구조설계 (2): 시험설계 및 가공제작)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • This paper is the second paper among two papers which constitute the paper about the structural design of a dental implant. This paper completed the test drafting for the structural model of the new dental implant whose structural performance was confirmed and verified through the comparative structural analysis carried out in the first paper. This paper finished the structural design of a dental implant by manufacturing the dental implant using CNC machines and so forth on the basis of the completed draft and finally by evaluating the machining condition of the dental implant. The drafting work was performed using MDT(Mechanical Desk Top). The manufacturing work was carried out using CNC machines, general purpose milling machine, and Wire EDM. The manufactured surface condition of the dental implant was evaluated and confirmed finally using an electron microscope. As a result of evaluation, a testing dental implant with very good condition was designed and manufactured.

Evaluation of Homogeneity and Stability of Korean Mussel (Mytilus coruscus) Standards for Cadmium Analysis (카드뮴 분석용 홍합(Mytilus coruscus) 표준물질의 균질성 및 안정성 시험평가)

  • Lee, Ha-Eun;Lee, Jangho;Chung, David;Lee, Soo Yong;Park, Ki-Wan;Shim, Kyu-Young
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1041-1045
    • /
    • 2019
  • In this study, the KS A ISO Guide 35 was applied to develop analytical standards for heavy metal cadmium using the Korean mussel (Mytilus coruscus) and to evaluate the homogeneity and stability of the sample. Some of the crucial characteristics that reference materials must consist include homogeneity and stability of both intra- and inter-bottles. We tested homogeneity using ANOVA analysis and short-term stability using regression analysis. The variations of cadmium concentrations did not significantly differ between intra- and inter-bottles (F=0.41, p=0.90). For short-term stability verification, cadmium analysis results were not statistically significant as a result of the regression analysis (significance F=0.51, p=0.53). This suggests that we can not dismiss the null hypothesis that there is no significant variation in concentrations of cadmium over time. These results indicated that the cryogenic-milling process has statistically proven the short-term stability for materials from mussels in the chemical analysis of cadmium. Therefore, we propose that the Korean mussel's reference material developed for the proficiency test could be used as a tool to evaluate reliability and consistency in laboratories.