• Title/Summary/Keyword: milling experiment

Search Result 204, Processing Time 0.038 seconds

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

Development of Face Milling Cutter Body System for High Speed Machining (고속가공을 위한 정면밀링커터 바디시스템 개발)

  • Jang Sung-Min;Maeng Min-Jae;Cho Myeong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.21-28
    • /
    • 2004
  • In modem manufacturing industries such as the airplane and automobile, aluminum alloys which are remarkable in durability have been utilized effectively. High-speed machining technology for surface roughness quality of workpiece has been applied in these fields. Higher cutting speed and feedrates lead to a reduction of machining time and increase of surface quality. Furthermore, the reduction of time required for polishing or lapping of machined surfaces improves the production rate. Traditional milling process for high speed cutting can be machined with end mill tool. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, face milling cutter which gives high MRR has developed face milling cutter body for the high speed machining of light alloy to overcome the problems. Also vibration experiment to detect natural frequency in free state and frequency characteristics during machining are performed to escape resonance.

A Study on the CNC Milling Machining of Thin-wall Part (범용 CNC 밀링에 의한 박막 측벽 파트 가공에 관한 연구)

  • 지성희;이동주;신보성;최두선;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.83-88
    • /
    • 2001
  • In order to suggest the proper optimal conditions of the CNC milling machining for the Thin-wall surface, some experiments were carried out. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical example for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter for end milling is one of the important factors affecting the cutting cost. In this paper, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

Simulation of surface profile using accelerometer in high speed end milling (고속 엔드밀 가공시 가속도계를 이용한 표면형상 시뮬레이션)

  • 이기용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.321-325
    • /
    • 2000
  • To obtain precise surface and high productivity, high speed end milling has been studied recently. Though high speed end milling is explicitly effective for precision surface generation geometrically, tool deflection, chatter vibration and frequency characteristics of end milling system deteriorate the theoretical surface. In this study, simulation algorithm and programming method are suggested to simulate machined surface using acceleration signal in high speed end milling. This simulation is conducted by considering vibrational effect of spindle system which was not considered by other researchers. Between simulated results and experiment results, good agreements were obtained.

  • PDF

Investigation of Surface Roughness Characteristics according to Tool Runout Variations in Side Milling Cutter for Worm Screw (사이드 밀링 커터를 이용한 워엄 스크루 가공에서 공구 런아웃이 표면조도에 미치는 영향분석)

  • Kim, Sun Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-82
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear motion. For mass production of a high quality worm, the current roll forming process is substituted with the milling cutter process. Since the milling cutter process enables the integration of all machining operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. The tooling system for side milling cutter on the CNC lathe to improve machinability is developed. However, the runout of spindle and cutting tips are important factors to be considered for producing high quality worms because the tooling system has multiple tips. In this study, surface roughness variations accuracy according to runout was investigated in side milling cutter for worm screw. The result shows by simulation and experiment.

  • PDF

A Study on the Prediction of Temperature Distribution and Machining Force in the Milling Process (밀링가공에서의 온도분포와 절삭력 예측을 위한 연구)

  • 강재훈;송준엽;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.394-397
    • /
    • 2004
  • This paper presents a simple analytic method using 2D simulation program for predications of cutting force and machining temperature in dry type milling process. And also, comparison of cutting force and machining temperature obtained from experiment and simulation work is accomplished to distinguish of suitability.

  • PDF

CNC milling experiments using a variable structure control (가변구조제어기를 사용한 CNC 공작기계의 절삭실험)

  • 김정호;은용순;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.852-855
    • /
    • 1996
  • A variable structure controller is developed for an AC servo motor used in CNC milling machines. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. The robustness parameter is tuned for a fast response when the speed tracking error is large, while it is tuned for small oscillations when the speed tracking error is small. The designed controller is installed on a CNC machine using a PC. Cutting experiments show improved performance over the factory-designed controller.

  • PDF

A Study on the Improvement of Sculptured surface Sopography in Milling Operation by Using Tertiary Motion Attachment (밀링작업에서 보조장치를 이용한 자유곡면의 표면거칠기 향상에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-72
    • /
    • 1996
  • The applicability of a new method, termed the whirling motion concept, for the improvement of the surface finish in milling three-dimensional sculptured surfaces has been investigated. A method for implementing this concept o conventional NC machines that utilize a suitably configured attachment has been proposed. The tool path equation for the ball-end milling process, based on the surface-shaping system, has been obtained. Both results of the computer simulation and the experiment verified the proposed approach.

  • PDF

Research of the cutting force measuring system using feed drive system built in load cell (이송계에 부착시킨 로드셀을 이용한 절삭력 측정시스템에 관한 연구)

  • 강은구;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.595-598
    • /
    • 2000
  • This paper presents new cutting force measuring system for milling process. Usually, tool dynamometer is the most appropriate measuring tool in an analysis of cutting mechanism. High price and limited space, however, make it difficult to be in-situ system for controllable milling process. Although an alternative using AC current of servomotor has been suggested, it is unsuitable for cutting force control because of low bandwidth and noise. We suggest new cutting force measuring system, using two load cell placed between moving table and nut of ballscrew, and modelled on the system statically and dynamically. And to verify the accuracy of the proposed system, a series of carefully conducted experiments were carried out. Experiment results show that models are in reasonably good agreement with the experiment data.

  • PDF