• Title/Summary/Keyword: millimg methods

Search Result 2, Processing Time 0.023 seconds

The Effect of Added Water Volume on the Textural Properties of Injulmi made from Waxy Rice Flours using Different Milling Methods (제분방법을 달리한 찹쌀가루로 만든 인절미의 텍스처 특성에 물 첨가량이 미치는 효과)

  • 김정옥;신말식
    • Korean Journal of Human Ecology
    • /
    • v.5 no.2
    • /
    • pp.33-43
    • /
    • 2002
  • This study was investigated textural properties of Injulmi affected by milling methods, varieties and added water volume. Sinsunchalbyeo and Hwasunchalbyeo flours were made using Rin-dry milling(PDM) and roll-wet milling(RWM) methods. The proximate composition of waxy rice starches and waxy rice flours were similar. Water binding capacity, soluble carbohydrate and damaged starch of waxy rice flour by RWM: were higher than those of waxy rice flours by PDM. By increasing added water volume, hardness and adhesiveness of Injulmi were decreased. By increasing storage time, hardness of Injulmi was increased, but adhesiveness was decreased. The hardness of Injulmi made from waxy rice flours by PDM was higher than by RDW.

  • PDF

쌀가루의 제분방법에 따른 증편의 노화도 특성

  • 김영인;금준석;이상효;이현유
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.221.2-222
    • /
    • 2003
  • The relative retrogradation of Jeungpyun investigated with different millimg methods of rice flour. The relative retrogradation of Jeungpyun was reduced in order that of W-C, W-P, D-M, D-J in DSC(Differential Scanning Calorimetry) method while W-C, D-M, D-J, W-P in Diastase method. In wet milling method, the relative retrogradation of Jeungpyun by Pin mill(W-P) was lower than Jeungpyun by colloid mill(W-C). In dry milling method, the relative retrogration of Jeungpyun by jet mill(D-J) was lower than Jeungpyun by micro mill(D-M). The relative retrogradation of Jeungpyun by DSC method was similar to the Diastase method. The relative retrogradation of Jeungpyun was decreased with decreasing particle size and setback value for amylogram and increasing damaged starch.

  • PDF