• Title/Summary/Keyword: milk waste

Search Result 50, Processing Time 0.034 seconds

A Study of Milk Waste Recycling as an Energy Source and Reduction of Pollution by Anaerobic Digestion (혐기성 소화를 통한 유가공 폐기물의 에너지원으로의 재활용과 오염 감소 방안에 관한 연구)

  • Lim, Samuel;Lim, Hyun-Ji;Jung, Kook-Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • We confirmed methane production and reduction of pollution during anaerobic digestion of milk waste and analyzed the economic potential of using milk waste as a renewable energy source. The milk waste sludge was obtained from the Pasteur milk factory and processed by anaerobic digestion to produce methane. The methane production from two completely mixed tank reactors with an effective capacity of 6 ${\ell}$, 15 days of hydraulic retention time (HRT), and a mid-temperature of $35^{\circ}C$ averaged 4.11 ${\ell}$/day. The total chemical oxygen demand (TCOD) during production decreased from an initial 31,416 mg/${\ell}$ to 13,500 mg/${\ell}$, showing a maximum TCOD removal efficiency of 60%. When HRT was reduced to 12 days, methane production increased by 44% under a high-temperature condition of $55^{\circ}C$. An economic analysis based on these results was applied to a Korean milk factory of typical size and demonstrated that the installation of an anaerobic digester could provide sufficient economic profit.

  • PDF

Kinetics for Citric Acid Production from the Concentrated Milk Factory Waste Water by Aspergillus niger ATCC 9142

  • Suh, Myung-Gyo;Roh, Jong-Su;Lee, Kook-Eui;Lee, Yong-Hee;Chung, Kyung-Tae
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.359-364
    • /
    • 2005
  • The possible use of milk factory waste water as fermentation media for the production of citric acid by cells of Aspergillus niger ATCC 9142 has been investigated. The addition of $Mn^{2+}$, $Fe^{2+}$ and $Cu^{2+}$ to a medium promoted the citric acid production steadily, but addition of another metal ion $Mg^{2+}$decreased the citric acid production. The concentrations of citric acid were marked up to 7.2g/1 and 16.5g/l in a batch bioreactor by A. niger ATCC 9142 with 50g/1 and 100g/l of reducing sugar concentration in milk factory waste water, respectively.

  • PDF

Preparation of Multi Skin Care Gauze by Blending of Silk Fiber and Separated Cellulose from Waste Milk Pack (견사와 폐 우유팩으로부터 분리한 셀룰로오스가 함유된 복합 위생포 제작)

  • 여주홍;이광길;이용우;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.109-113
    • /
    • 2000
  • The preparation of skin care gauze could be make to mixing separated cellulose from waste milk pack and degummed silk fibroin fiber. Also, its wound covering and anti-bacterial activity were investigated in order to find out the enhancement of their functionality. By the 30% silk fibroin fiber including skin care gauze, the anti-bacterial activity values of Staphylococcus strain are much 4 times higher than of 0∼10% silk fibroin fiber including skin care gauze. The average yield of cellulose from waste milk pack was obtained 50-60%, and their morphologies, physical properties, modulus and biodegradation ratios are studies, respectively.

  • PDF

Kinetics for Citric Acid Production from the Concentrated Milk Factory Waste Water by Aspergillus niger ATCC 9142 (Aspergillus niger ATCC 9142 세포에 의해 농축된 우유공장폐수로부터 구연산생산에 대한 동력학 연구)

  • Lee Yong-Hee;Suh Myung-Gyo;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.6-11
    • /
    • 2006
  • The waste water from a milk factory was investigated for possibility of use to the production of citric acid by cells of Aspegillus niger ATCC 9142. The addition of $Mn^{2+},\;Fe^{2+}\;and\;Cu^{2+}$ ions to waste increased citric acid production steadily, but addition of metal ion $Mg^{2+}$ decreased the citric acid production. The amount of produced citric acid by Aspegillus niger ATCC 9142 with addition 50 g/1 and 100 g/1 of reducing sugar in milk factory waste water were 7.2 g/1 and 16.5 g/1 respectively. Mathematical model was simulated for their predictability of cell growth, citric acid production and substrate consumption rate and coincided with experimental data.

Effect of Proximate Composition Ratios for Biogas Production

  • Kim, Min-Jee;Kim, Soo-Ah;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.155-162
    • /
    • 2017
  • Purpose: The objective of this study was to evaluate the biogas productivity of agricultural by-products (ABPs) based on their proximate composition. Specifically, the effects of proximate composition were investigated, and a new mixing method was developed using various ABPs that are difficult to digest for biogas production. Methods: Experiments were conducted to compare the biogas productivity between a single ABP and a mixture of ABPs that had the same proximate composition as the single ABP. To match the proximate compositions of radish waste and corn distiller's dried grains with solubles (DDGS), mixed ABPs were made from various ABPs. Biogas potential tests (BMP tests) were performed at an organic loading rate (OLR) of 2.5 g VS/L and a feed to microorganism ratio (F/M) of 0.5 under the mesophilic condition. Results: The individual ABPs (radish and corn DDGS) and the mixed ABPs (cabbage waste with skim milk waste, bean-curd waste with skim milk waste, and some others) produced similar amounts of biogas. Conclusions: The new mixing method based on proximate composition can be applied to other ABPs and organic wastes from factories and municipal waste treatment plants to develop renewable energy and effective waste treatment methods.

Optimal Condition for Citric Acid Production from Milk Factory Waste Water by Using the Immobilized Cells of Aspergillus niger (고정화 Aspergillus niger 세포를 이용한 우유공장 폐수로부터 구연산 생산의 최적 조건)

  • 이용희;서명교;노호석;이동환;정경태;정영기
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.154-157
    • /
    • 2004
  • Immobilized cells of Aspergillus niger was employed to produce citric acid by fermentation of milk factory waste water. A. niger ATCC 9142 as a citric acid production strain was cultured for 3 days and was entrapped with Ca-alginate bead about 2.5∼3.5 mm. The optimal pH and temperature were estimated to be 3.0 and $30^{\circ}C$, respectively. Dilution rate for fermentation was calculated to be $0.025 h^{-1}$ . Maximum amount of citric acid was obtained at 4.5 g/$\ell$ with the optimized fermentation condition. The yield of citric acid produced by immobilized A. niger ATCC 9143 was 70.3%. The yield was increased by 20% with immobilized cell, compared to that of the shake flask culture. Hence, the milk factory waste water is worthy to be used for the substrate of citric acid fermentation.

Ensiled Green Tea Waste as Partial Replacement for Soybean Meal and Alfalfa Hay in Lactating Cows

  • Kondo, Makoto;Nakano, Masashi;Kaneko, Akemi;Agata, Hirobumi;Kita, Kazumi;Yokota, Hiroomi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.960-966
    • /
    • 2004
  • The purpose of this study was to evaluate the effects of protein supplementation of green tea waste (GTW) on the performance of lactating cows. Another aim was to increase resource utilization and to eliminate any environmental negative impact from the tea waste. GTW from a beverage company was ensiled at a low pH (<4.0) and high acetic acid and lactic acid concentration, and it contained high crude protein (CP, 34.8%), total extractable tannins (TET, 9.2%) and condensed tannin (CT, 1.7%). Two experiments were conducted to investigate the palatability and performance in lactating cows fed GTW. In the palatability trial, three lactating cows were allocated to three dietary treatments in a 3$\times$3 Latin square design. The animals were offered a total mixed ration (TMR) including GTW at rates of 0, 2.5 and 5.0% on a dry matter (DM) basis. Total DM intake was not different among the treatments. In the performance trial, four lactating cows were used in a 2$\times$2 Latin square design with a 3 week sampling period. GTW was incorporated into TMR at a rate of 5.0% on a DM and 10.0% on a CP basis. Thus GTW replaced alfalfa hay and soybean meal at a level of 25.0% on a DM. DM and CP intake were not affected by the inclusion of GTW, whereas TET and CT intake were significantly increased (p<0.001). Milk production, milk composition and the efficiency of milk production were not altered by the GTW inclusion. Although ruminal pH and VFA, and blood urea nitrogen were not changed, ruminal $NH_{3}-N$ and plasma total cholesterol were relatively low in the GTW group, but not significantly different. The excretion of urinary purine derivatives and estimated MN supply were also not significantly affected by GTW treatment. It is therefore concluded that GTW can be used as a protein source without any detrimental effects on the performance of lactating cows.

Evaluation of dry feeding and liquid feeding to lactating sows under high temperature environment

  • Hong, J.S.;Jin, S.S.;Jung, S.W.;Fang, L.H.;Kim, Y.Y.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.10
    • /
    • pp.36.1-36.5
    • /
    • 2016
  • Background: Liquid feeding system has been introduced to domestic swine farms, but negative cognition about liquid feeding system has been remained for feed waste decay related with poor management and microbial contamination. For these reasons, this study was conducted to evaluate the effects of feeding method in lactating sows. Methods: A total of 30 mixed-parity (average 4.13) lactating sows (Yorkshire ${\times}$ Landrace) with an initial BW of $218.8{\pm}19.5kg$ was used in a 3 week trial. Sows were allotted to 1 of 2 treatments in a completely randomized design by their body weight, backfat thickness, parity and alive litter weight. One of treatments was dry feeding and the other was liquid feeding (water to feed ratio, 1:1). Experimental diets contained 3265 kcal ME/kg, 12.6 % CP, 5.76 % EE, 1.09 % total lysine, 0.25 % total methionine, as fed basis. Results: Dry feeding treatment had high body weight loss rather than liquid feeding treatment (P = 0.04). Dry feeding treatment had tendency to increase litter weight at 21d of lactation (P = 0.06) and litter weight gain (P = 0.04) during lactation period (0-3 week). Sows fed dry feeding method made milk containing high content of casein and total solid rather than sows fed liquid feeding method (P = 0.04). In addition, dry feeding treatment had tendency to higher content of milk fat, protein and solid not fat on 21d of lactation (P = 0.07). Sows fed dry feeding type also showed higher milk energy content in milk of 21d lactation (P = 0.05). Furthermore, liquid feeding treatment showed high occurrence in feed waste during lactation period (P <0.01). Conclusion: Dry feeding method was more suitable feeding method to lactating sows under high temperature environment like lactating barn.

Current status, challenges and prospects for dairy goat production in the Americas

  • Lu, Christopher D.;Miller, Beth A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1244-1255
    • /
    • 2019
  • Dairy goat production continues to be a socially, economically and culturally important part of the livestock industry in North, Central and South America and the Caribbean islands. Goat milk, cheese and other dairy products offer consumers food products with nutritional, health and environmental benefits. In North America, Mexico produces the greatest volume of goat milk, but most is for family or local consumption that is typical of a mixed farming system adopted by subsistence farmers in dry areas. The United States is not yet a large global goat milk producer, but the sector has expanded rapidly, with dairy goat numbers doubling between 1997 and 2012. The number of dairy goats has also increased dramatically in Canada. Commercial farms are increasingly important, driven by rising demand for good quality and locally sourced goat cheese. In South America, Brazil has the most developed dairy goat industry that includes government assistance to small-scale producers and low-income households. As of 2017, FAO identified Haiti, Peru, Jamaica, and Bolivia as having important goat milk production in the Western Hemisphere. For subsistence goat producers in the Americas on marginal land without prior history of chemical usage, organic dairy goat production can be a viable alternative for income generation, with sufficient transportation, sanitation and marketing initiatives. Production efficiency, greenhouse gas emission, waste disposal, and animal welfare are important challenges for dairy goat producers in the Americas.

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.