• Title/Summary/Keyword: milk protein isolate

Search Result 28, Processing Time 0.021 seconds

Improvements in the Physical Properties of Agglomerated Milk Protein Isolate/Skim Milk Powder Mixtures Via Fluidized Bed Agglomeration

  • Seo, Chan Won
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.134-142
    • /
    • 2022
  • Protein-enriched dairy powder is widely consumed to promote muscle synthesis. Recently, in Korea, elderly people have also begun consuming protein powder products to prevent muscle loss. However, these protein-enriched powders have poor flowability and hydration properties because of the fine particles of spray-dried milk protein powder. Therefore, in this study, the fluidized bed agglomeration process was used to solve these problems. The rheological and physical properties of milk protein isolate (MPI)/skim milk powder (SMP) mixtures were effectively improved via fluidized bed agglomeration. The particle size of the MPI/SMP mixtures significantly increased from 35.7-58 ㎛ to 118-136 ㎛, the flowability level improved from fair (21.4-26.3) to good (15.7-16.3), and the cohesiveness level changed from intermediate (1.27-1.36) to low (1.18-1.19) after fluidized bed agglomeration. In addition, the wetting time of the agglomerated MPI/SMP mixtures was effectively reduced to 4.67-58.3 s by fluidized bed agglomeration. These findings may be useful for manufacturing protein-enriched dairy powders with good instant properties.

Preparation of Seaweed Jelly(Muk) with Sea Mustard (Undaria pinnatifida) and Sea Tangle(Laminaria japonica) -3. Muks Prepared with Soy milk or Soy Protein Isolate- (미역과 다시마를 이용한 해조묵제조 -3. 두유혼합묵과 분리대두단백질 혼합묵-)

  • JUNG Yong-Hyun;COOK Joong-Lyoul;CHANG Soo-Hyun;KIM Jong-Bae;KIM Geon-Bae;CHOE Sun-Nam;KANG Yeung-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.325-330
    • /
    • 1995
  • Seaweed Jellys(Muks) were prepared with sea mustard and sea tangle, Optimum conditions for preparation of seaweed Muks with soy protein were investigated. Gel strength of Muks with sea mustard and soymilk decreased as the quantity of soy milk increased, and increased as the moisture content of soy milk had been decreased. Optimum mixing ratio of seaweed and soy milk was 7 : 1 and optimum temperature of gelation was $65^{\circ}C$. Gel strength of seaweed Muk mixed $5\%$(w/w) of soy protein isolate was higher$(900g/cm^2)$ than those of seaweed Muks with and without soy milk.

  • PDF

Effects of Functional Properties of Soy Protein Isolate and Qualities of Soybean Curd upon Proteolytic Hydrolysis (효소처리가 대두단백질의 기능특성과 두부의 품질에 미치는 영향)

  • Han, Jin-Suk;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.294-299
    • /
    • 1992
  • This study was to examine the effect of functional properties of soy protein isolate(SPI) and qualities of soybean curd upon proteolytic hydrolysis. SPI was hydrolyzed using proteolytic enzyme, bromelain. The protein content of SPI by microkjeldahl method was 84% and the degree of hydrolysis in modified soy protein isolate(MSPI) was 2.7%. The solubility of MSPI was higher than that of control at various pH tested and proteolytic hydrolysis was increased emulsion formation and foam expansion while decreased emulsion stability, foam stability and calcium precipitation. Modified soybean curdI, standard soybean milk: Modified soybean milk=3:1, was soft and springy soybean curd when the texture properties of soybean curd were tested by texture profile analysis using Instron and sensory evaluation. The rheological model of soybean curds was investigated by stress relaxation test. The analysis of relaxation curve revealed that the rheological behavior of soybean curds could be expressed by 7-element generalized Maxwell model. The equilibrium modulus and modulus of elasticity decreased as the ratio of modified soybean milk was increased.

  • PDF

Quality Characteristics of Paeksulgi (Korean rice cake) Containing Various Levels of Whey Protein Isolate Powder (WPI 분말을 첨가한 백설기의 품질 특성)

  • Kim, Chan-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.5
    • /
    • pp.561-569
    • /
    • 2009
  • The effects of substituting whey protein isolate (WPI) powder for rice flour during the preparation of paeksulgi (Korean rice cake) were evaluated by objective and subjective tests. Milk whey is drained from milk curd as a by-product of the cheese manufacturing process. Whey protein is known as a good nutritional source and a functional material for many processed foods. WPI contains more than 90% whey protein. The moisture content decreased gradually during storage and the decrease was less in control than WPI powder-substituted groups. The color lightness (L) decreased significantly with increasing WPI powder, wherease the redness (a) and yellowness (b) both increased. Texture analyses revealed that the hardness, chewiness, gumminess, adhesiveness and fracturability of paeksulgitended to increase in proportion to the amount of WPI powder added. Evaluation of the gelatinization of paeksulgi by amylographing revealed that the initial pasting temperature, peak viscosity, hot pasting viscosity and breakdown was lower in samples that contained WPI powder. However, the lowest setback value was observed in the control. The results of the sensory evaluation indicated that paeksulgi prepared with 2% WPI powder had the highest overall acceptability. Taken together, these results suggest that WPI paeksulgi containing 2% WPI powder has the best quality.

Electrophoretical Properties of Transglutaminase Treated Milk Product Powders (Transglutaminase를 처리한 분말 유제품의 전기영동적 특성)

  • Jeong, Ji-Eun;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.304-308
    • /
    • 2006
  • This study was performed to understand the behavior of protein mobility and intensity of enzymatic hydrolysis according to crosslinking of sodium caseinate, whey protein isolate, skim milk and whole milk powders with or without transglutaminase (TGase, w/w = 200 : 1) at $38^{\circ}C$. Whey protein was limited to crosslinking and skim milk was relatively more increased in high molecular polymer than whole milk. The degree of crosslinking decreased in the order of sodium caseinate>skim milk>whole milk>whey protein isolate. The SDS-PAGE results indicated that main bands of TGase treated samples had a high mobility and formed bands of molecular weights below 15 kDa by hydrolysis with pepsin after 10 min of reaction time. However, ${\beta}-lactoglobulin$ showed remarkable stability against pepsin hydrolysis treated with and without TGase. The high molecular polymers were easily hydrolyzed with digestive enzymes in vitro experiment. These results suggested that novel dairy products using TGase would have no special digestive problem in human body.

Effect of Milk Protein Isolate/κ-Carrageenan Conjugates on Rheological and Physical Properties of Whipping Cream: A Comparative Study of Maillard Conjugates and Electrostatic Complexes

  • Seo, Chan Won;Yoo, Byoungseung
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.889-902
    • /
    • 2022
  • With increasing consumer demand for "clean label" products, the use of natural ingredients is required in the food industry. Protein/polysaccharide complexes are considered good alternatives to synthetic emulsifiers and stabilizers for formulating stable emulsion-based foods. Milk protein and carrageenan are widely used to improve the physical properties and stability of dairy food products. In a previous study, milk protein isolate (MPI) was conjugated with 𝛋-carrageenan (𝛋-Car) in a wet-heating system through the Maillard reaction, and the Maillard conjugates (MC) derived from MPI and 𝛋-Car effectively improved the stability of oil-in-water emulsions. Therefore, MPI/𝛋-Car conjugates were used in whipping cream as natural emulsifiers in this study, and the physical and rheological properties of whipping creams stabilized using MPI/𝛋-Car MC and MPI/𝛋-Car electrostatic complexes (EC) were investigated. The whipping creams stabilized with MPI/𝛋-Car MC have lower rheological parameters (ηa,50, K, G', and G'') than those of whipping creams stabilized with MPI/𝛋-Car EC. Although the overrun value was slightly reduced owing to the addition of MPI/𝛋-Car MC, the stability of the whipped creams with MC was effectively improved due to enhanced water-holding ability by conjugation.

Improved Flowability and Wettability of Whey Protein-Fortified Skim Milk Powder via Fluidized Bed Agglomeration

  • Seo, Chan Won
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.915-927
    • /
    • 2022
  • Recently, protein-fortified milk powders are being widely consumed in Korea to prevent sarcopenia, and the demand for high-protein food powders is continuously increasing in the Korean market. However, spray-dried milk proteins have poor flowability and wettability owing to their fine particle sizes and high inter-particle cohesive forces. Fluidized bed agglomeration is widely used to improve the instant properties of food powders. This study investigated the effect of fluidized bed agglomeration on whey protein isolate (WPI)-fortified skim milk powder (SMP) at different SMP/WPI ratios. The fluidized bed process increased the particle size distribution, and agglomerated particles with grape-like structures were observed in the SEM images. As the size increased, the Carr index (CI) and Hausner ratio (HR) values of the agglomerated WPI-fortified SMP particles exhibited excellent flowability (CI: <15) and low cohesiveness (HR: <1.2). In addition, agglomerated WPI-fortified SMP particles exhibited the faster wetting time than the instant criterion (<20 s). As a result, the rheological and physical properties of the WPI-fortified SMP particles were effectively improved by fluidized bed agglomeration. However, the fluidized bed agglomeration process led to a slight change in the color properties. The CIE L* decreased, and the CIE b* increased because of the Maillard reaction. The apparent viscosity (ηa,10) and consistency index (K) values of the rehydrated solutions (60 g/180 mL water) increased with the increasing WPI ratio. These results may be useful for formulating protein-fortified milk powder with better instant properties.

The Quality Characteristics of Sponge Cake with Varied Levels of Whey Protein Isolate (Whey Protein Isolate(WPI)의 대체비율을 달리한 스폰지 케이크의 품질 특성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Korean journal of food and cookery science
    • /
    • v.23 no.1 s.97
    • /
    • pp.41-49
    • /
    • 2007
  • The substitution effects of whey protein isolate(WPI) for egg in the preparation of sponge cake were determined by objective and subjective tests. Milk whey is drained from milk curd as a by-product of cheese manufacture. Whey protein is known as a good nutritional source and a functional material for many processed foods, especially baked goods. WPI contains above 90% whey protein. The specific gravity and viscosity of sponge cakes tend to be affected by WPI substitution. The cooking loss of sponge cakes with WPI substituted for egg(abbreviated as WPI cake) during oven baking was smaller than that made with egg(abbreviated as egg cake) and the specific loaf volume of WPI cake was larger than that of egg cake. The number of pores was highly increased and the size of pores was more uniformly and finely distributed in the cross section of WPI cake than those of egg cake, as observed by scanning electron microscopy(SEM). The hardness, gumminess and chewiness of WPI cake made with 10-20% WPI substitution were the lowest among all the tested cakes, including egg cake, thereby confirming the considerable improvement in their cake qualities. By the results of sensory evaluation, appearance, pore uniformity, softness, chewiness, moistness, flavor, mouth feeling, and overall acceptability of 10-20% WPI substitute cakes were evaluated as being significantly superior to those of all other cakes(p<0.05). These results support the better physicochemical characteristics and sensory evaluations of sponge cake prepared with 10-20% of WPI substitution for egg.

Physicochemical, Textural, and Sensory Properties of Low-fat/reduced-salt Sausages as Affected by Salt Levels and Different Type and Level of Milk Proteins

  • Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • This study was performed to develop low-fat/reduced-salt sausages (LFRSS; <3% fat and <1.5% salt) containing milk protein (whey protein concentrate, WPC, or sodium caseinate, SC) that showed the similar cooking yield and textural characteristics to those of regular-fat/salt sausage control (RFC; 20% fat and 1.5% salt) or low-fat sausage control (LFC; <3% fat and 1.5% salt). Low-fat sausages (LFS) were formulated with a 2.5% fat replacer (konjac flour:carrageenan:soy protein isolate=1:1:3) and various salt levels (0.75, 1.0, 1.25, and 1.5%). LFS had differences in color and expressible moisture (EM, %) values as compared to those of RFC. A minimum salt level of 1% and addition of nonmeat proteins were required to manufacture LFRSS that have similar characteristics to those of RFC. However, LFS with 2% milk proteins reduced the hardness and gumminess as compared to LFC. These results indicated that 1% milk protein in combined with 1% salt was a proper level for manufacturing of LFRSS.

An Enzyme-Linked Immunosorbent Assay for Detection of Milk proteins in Food (우유단백질의 분석을 위한 효소면역측정법)

  • Shon, Dong-Hwa;Kim, Hyun-Jung;Bae, Gun-Won;Kim, Soon-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.564-569
    • /
    • 2000
  • An enzyme-linked immunosorbent assay(ELISA) was developed for the detection of milk proteins in processed foods. The ${\alpha}_{s1}-casein({\alpha}_{s1}-CN)$, a heat stable major milk protein, was immunized into rabbits to produce specific antibodies. When competitive indirect ELISA(ciELISA) using $anti-{\alpha}_{s1}-CN$ antibodies was established, its detection limit was $0.1\;{\mu}g/mL$. The reactivities of the specific antibodies toward ${\alpha}_{s1}-CN$, skim milk, ${\beta}-CN$ and whey protein isolate(WPI) were 100, 37, 0.14 and 0.04%, respectively, as determined by ciELISA. However $anti-{\alpha}_{s1}-CN$ antibodies did not have any reactivity to other milk proteins such as ${\beta}-lactoglobulin,\;{\alpha}-lactalbumin$, bovine serum albumin, and isolated soy protein. When sandwich ELISA was established, its detection limit was $0.01\;{\mu}g/mL$ which was 10 times more sensitive than that of ciELISA. In the spike test which was performed by adding 1-10% of whole CN to market milk, mean assay recovery as determined by sandwich ELISA was 94.8%(CV, 8.2%). Food stuffs and dairy products were assayed by sandwich ELISA to show 29, 0.13, 0.25, and 6.9% of whole CN in skim milk powder, WPI, semi-solid yoghurt, and processed cheese, respectively.

  • PDF