• 제목/요약/키워드: mid-rise buildings

Search Result 95, Processing Time 0.027 seconds

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

The Tentative Plans of Adaptive Reuse of Korean Traditional Houses (Han ok) in Urban Area : Focusing on the Elderly Housing in Seoun-dong, Cheongju (도시한옥의 적응적 재생 모델시안 연구 -청주 서운동의 노인계층을 위한 모델링 사례를 통하여-)

  • Kim, Tai Young;Kim, Eun Jeong
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • When the castle of the city was destructed from 1911 through 1915 in Cheongju, the city's spatial structure was reorganized and "Han-ok Housing", a dwelling site filled with Korean traditional houses, was newly formed around the former castle site. These days, the Han-ok housing in Seoun-dong, Cheongju in which elderly couples and senior citizens live is enclosed by modernized roads and three or four-story buildings, leaving the housing as an isolated island in the city block. Nonetheless, the Han-ok housing not only plays an important role in sustaining the historic and local identity of the city, but also offers environmental benefits in terms of daylighting and ventilation. The purpose of this study is to reorganize the housing suitable for those who currently live and recreate it by adding new functionality. Consequently, three strategies are established; the conservation of existing building through the improvement of existing facilities; the conversion of vacant buildings into a new use; and the creation of the urban mid-rise Han-ok housing at street sides. The first strategy has a significance in that the traditional building's single wing plan, small room sizes and lack of storages now cause great inconvenience for current life style. The second strategy also promotes the practical use of abandoned buildings through alterations and additions. Finally, the creation of the urban mid-rise Han-ok housing that is accomplished by the combination of reinforced concrete and wooden structure interacts with or respond to the city's development. As a result, this study for the adaptive reuse of Han-ok housing proves how the traditional properties can be maintained in a careful manner and how its creative reuse can be achieved.

Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures (건축물 내 방송통신설비를 위한 면진장치의 동적거동)

  • Jeong, Saebyeok;Choi, Hyoung-Suk;Seo, Young-Deuk;Jung, Donghyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In earthquake situations, broadcasting and communication services are directly linked to rapid on-site rescue and effective restoration works. Recently, a variety of base isolation devices are widely introduced on building floors to avoid critical seismic damages of telecommunication facilities. However, in buildings with long fundamental periods, those devices may have undesirable amplification of seismic responses due to resonance effect between the building floors and base isolation devices. This study performs the seismic safety evaluation of two types of base isolation devices deployed for telecommunication facilities in mid- and high-rise buildings through numerical and experimental approaches. It is found that mid- and high-rise buildings can have low-frequency dynamic responses at the top floor when being subjected to design basis earthquake loading. Furthermore, bi-directional shake table testing demonstrated that the selected base isolation devices can exhibit unstable dynamic behaviors under such low-frequency excitations of the floor.

Vibration Control of High-rise Building Structures using Top-story Isolation Systems (최상층면진시스템을 활용한 고층건물의 진동제어)

  • Kim, Tae-Ho;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the possibility of vibration control of high-rise building structures by applying top-story isolation has been investigated. To this end, El Centro NS (1940) earthquake load is applied to 20- and 50-story building structures for numerical analysis. Artificial wind loads are used to evaluate the serviceability of example structures against wind vibration. As the number of isolated stories of example buildings is changed, structural responses has been evaluated to investigate optimal isolated building mass. And the natural period of isolation systems for top-story isolation is varied to investigate the improvement of control performance compared with the fixed base structure. Based on the analytical results, the top-story isolation system can be used as a hued mass damper and effectively reduce the structural responses of high-rise buildings against wind and seismic loads.

  • PDF

Comparison of Nonlinear Analysis Programs for Small-size Reinforced Concrete Buildings II (소규모 철근콘크리트 건축물을 위한 비선형해석 프로그램 비교 II)

  • Yoo, Changhwan;Kim, Taewan;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • For small-size reinforce-concrete buildings, Midas Gen, OpenSees, and Perform-3D, which are structural analysis programs that are most popularly used at present, were applied for nonlinear static pushover analysis, and then difference between those programs was analyzed. Example buildings were limited to 2-story frames with irregular shaped walls. Analysis result showed that there were more differences than for frames only and frames with rectangular walls, but it was not so significant. Nevertheless, the capacity curve were different in some buildings, which is attributed to shape and location of walls, and feature of the analysis program. Especially, selection of automatic or manual input in Midas Gen, or nonlinear wall elements in Perform3D can affect the capacity curve and performance of the buildings. Therefore, the program users should understand the feature of the program well, and then conduct performance assessment. The result of this study is limited to low-story buildings so that it should be noted that it is possible to get different results for mid- to high-rise buildings.

Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania

  • Bilgin, Huseyin;Huta, Ergys
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.599-614
    • /
    • 2018
  • This study focuses on the earthquake performance of two URM buildings having typical architectural configurations common for residential use constructed per pre-modern code in Albania. Both buildings are unreinforced clay brick masonry structures constructed in 1960 and 1984, respectively. The first building is a three-storey unreinforced one with masonry walls. The second one is confined masonry rising on five floors. Mechanical characteristics of masonry walls were determined based on experimental tests conducted according to ASTM C67-09 regulations. A global numerical model of the buildings was built, and masonry material was simulated as nonlinear. Pushover analyses are carried out to obtain capacity curves. Displacement demands were calculated according to Eurocode 8 and FEMA440 guidelines. Causes of building failures in recent earthquakes were examined using the results of this study. The results of the study showed that the URM building displays higher displacement and shear force demands that can be directly related to damage or collapse. On the other hand, the confined one exhibits relatively higher seismic resistance by indicating moderate damage. Moreover, effects of demand estimation approaches on performance assessment of URM buildings were compared. Deficiencies and possible solutions to improve the capacity of such buildings were discussed.

Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System (기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구)

  • 김지원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

Identifying stiffness irregularity in buildings using fundamental lateral mode shape

  • Vijayanarayanan, A.R.;Goswami, Rupen;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.437-448
    • /
    • 2017
  • Soft or extreme soft storeys in multi-storied buildings cause localized damage (and even collapse) during strong earthquake shaking. The presence of such soft or extremely soft storey is identified through provisions of vertical stiffness irregularity in seismic design codes. Identification of the irregularity in a building requires estimation of lateral translational stiffness of each storey. Estimation of lateral translational stiffness can be an arduous task. A simple procedure is presented to estimate storey stiffness using only properties of fundamental lateral translational mode of oscillation (namely natural period and associated mode shape), which are readily available to designers at the end of analysis stage. In addition, simplified analytical expressions are provided towards identifying stiffness irregularity. Results of linear elastic time-history analyses indicate that the proposed procedure captures the irregularity in storey stiffness in both low- and mid-rise buildings.

Progressive collapse resistance of low and mid-rise RC mercantile buildings subjected to a column failure

  • Demir, Aydin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.563-576
    • /
    • 2022
  • This study aimed to evaluate the progressive collapse potential of buildings designed using conventional design codes for the merchant occupancy classification and subjected to a sudden column failure. For this purpose, three reinforced concrete buildings having different story numbers were designed according to the seismic design recommendations of TSCB-2019. Later on, the buildings were analyzed using the GSA-2016 and UFC 4-023-03 to observe their progressive collapse responses. Three columns were removed independently in the structures from different locations. Nonlinear dynamic analysis method for the alternate path direct design approach was implemented for the design evaluation. The plasticity of the structural members was simulated by using nonlinear fiber hinges. The moment, axial, and shear force interaction on the hinges was considered by the Modified Compression Field Theory. Moreover, an existing experimental study investigating the progressive collapse behavior of reinforced concrete structures was used to observe the validation of nonlinear fiber hinges and the applied analysis methodology. The study results deduce that a limited local collapse disproportionately more extensive than the initial failure was experienced on the buildings designed according to TSCB-2019. The mercantile structures designed according to current seismic codes require additional direct design considerations to improve their progressive collapse resistance against the risk of a sudden column loss.

Structural Design of Nakanoshima Festival Tower West that Achieved High-Grade Seismic Performance

  • Kumano, Takehito;Yoshida, Satoshi;Saburi, Kazuhiro
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the structural concept and design of the "Nakanoshima Festival Tower West" in Osaka, Japan, which is 200m high and has a super-high damping system. Its superstructure is mainly composed of a central core and outer tube frames. It has a bottom truss structure at the boundary between the low-rise and mid-rise sections of the building, where the column arrangement is changed. Besides, the high-rise section of the building has a neck truss structure. These truss structures smoothly transfer the axial forces of the columns and reduce the flexural deformations induced by horizontal loads. Oil dampers with extremely high damping capacity are installed in the rigid walls named the "Big Wall Frames" of the low-rise section. Moreover, many braces and damping devices are well arranged in the center core of each story. The damping effects of these devices ensure that all structural members are remain within the elastic range and that story drifts are within 1/150 in large earthquakes. This super-high damping structure in the low-rise section is named the "Damping Layer". The whole structural system is named the "Super Damping Structure". The whole structural systems enhance the building's safety, comfort and Business Continuity Planning (BCP) under large earthquakes.