• 제목/요약/키워드: mid-rise buildings

검색결과 95건 처리시간 0.023초

A State-of-art of Experimental Research and Calculated Models of Dowel-type Timber Connections in Fire

  • Luo, Jing;He, Minjuan;Li, Zheng
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.285-297
    • /
    • 2021
  • Fire safety is one of the most significant issues for the design of mid-rise and high-rise timber structures. A large number of experimental tests were conducted during the last three decades to investigate the fire performance of the dowel-type timber connections. Many influenced parameters (e.g. the thickness of the side timber, the load ratio, the fasteners type etc.) were considered in those experiments. Relevant calculated models were proposed by previous researchers to estimate the fire resistance of the connections. In this study, a series of experimental programs of dowel-type connections in fire are collected. Then, empirical formulas proposed by EN 1995-1-2, Fire safety in timber buildings, and previous researchers are presented and analyzed. The accuracy of those formulas is checked by comparisons between the experimental data and estimated results. The collected experimental research and empirical formulas can be used as the reference for the fire design of dowel-type timber connections in the future.

Vulnerability curves of masonry constructions Algiers case study

  • Djaalali, F.;Bensaibi, M.;Bourahla, N.;Davenne, L.
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.609-629
    • /
    • 2012
  • This study deals with the assessment of low and mid rise multi-story buildings made of stone and /or brick, composite steel and masonry slabs from the sixties, known to be vulnerable to seismic hazard using the "vulnerability index" method based on buildings survey following Ain Temouchent (1999) and Boumerdes (2003) earthquakes, from where vulnerability curves are constructed using the translation method. The results obtained for the case study confirm what has been observed in situ.

Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings

  • B-Jahromi, Ali;Rotimi, Abdulazeez;Tovi, Shivan;Goodchild, Charles;Rizzuto, Joseph
    • Advances in concrete construction
    • /
    • 제5권2호
    • /
    • pp.155-171
    • /
    • 2017
  • The phenomenon of concrete column shortening has been widely acknowledged since it first became apparent in the 1960s. Axial column shortening is due to the combined effect of elastic and inelastic deformations, shrinkage and creep. This study aims to investigate the effects of ambient temperature, relative humidity, cement hardening speed and aggregate type on concrete column shortening. The investigation was conducted using a column shortening prediction model which is underpinned by the Eurocode 2. Critical analysis and evaluation of the results showed that the concrete aggregate types used in the concrete have significant impact on column shortening. Generally, aggregates with higher moduli of elasticity hold the best results in terms of shortening. Cement type used is another significant factor, as using slow hardening cement gives better results compared to rapid hardening cement. This study also showed that environmental factors, namely, ambient temperature and relative humidity have less impact on column shortening.

Seismic response of RC frame structures strengthened by reinforced masonry infill panels

  • Massumi, Ali;Mahboubi, Behnam;Ameri, Mohammad Reza
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1435-1452
    • /
    • 2015
  • The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. Experimental observations regarding the influence of infill panels on increasing stiffness and strength of reinforced concrete structures reveal that such panels can be used in order to strengthen reinforced concrete frames. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. In order to determine the acceptance criteria and modeling parameters for frames as well as reinforced masonry panels, the Iranian Guideline for Seismic Rehabilitation of Existing Masonry Buildings (Issue No. 376), the Iranian Guideline for Seismic Rehabilitation of Existing Structures (Issue No. 360) and FEMA Guidelines (FEMA 273 and 356) were used. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake

  • Mehani, Youcef;Bechtoula, Hakim;Kibboua, Abderrahmane;Naili, Mounir
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.791-808
    • /
    • 2013
  • The main purpose of this paper is to develop seismic fragility curves for existing reinforced concrete, RC, buildings based on the post earthquake field survey and the seismic performance using capacity design. Existing RC buildings constitute approximately 65% of the total stock in Algiers. This type of buildings, RC, was widely used in the past and chosen as the structural type for the future construction program of more than 2 millions apartments all over Algeria. These buildings, suffered moderate to extensive damage after the 2003 Boumerdes earthquake, on May 21st. The determination of analytical seismic fragility curves for low-rise and mid-rise existing RC buildings was carried out based on the consistent and complete post earthquake survey after that event. The information on the damaged existing RC buildings was investigated and evaluated by experts. Thirty four (34) communes (districts) of fifty seven (57), the most populated and affected by earthquake damage were considered in this study. Utilizing the field observed damage data and the Japanese Seismic Index Methodology, based on the capacity design method. Seismic fragility curves were developed for those buildings with a large number data in order to get a statistically significant sample size. According to the construction period and the code design, four types of existing RC buildings were considered. Buildings designed with pre-code (very poor structural behavior before 1955), Buildings designed with low code (poor structural behavior, between 1955-1981), buildings designed with medium code (moderate structural behavior, between 1981-1999) and buildings designed with high code (good structural behavior, after 1999).

Effect of rapid screening parameters on seismic performance of RC buildings

  • Ozmen, Hayri B.;Inel, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.391-399
    • /
    • 2017
  • This study investigates the effects of soft story, short columns, heavy overhangs, pounding, and construction and workmanship quality parameters on seismic response of reinforced concrete buildings through nonlinear static and dynamic procedures. The accounted parameters are selected for their common use in rapid screening of RC buildings. The 4- and 7-story buildings designed according to pre-modern codes are used to reflect majority of the existing building stock. The relative penalty scores are employed in this study to evaluate relative importance of certain irregularities in the existing rapid seismic assessment procedures. Comparison of relative scores for the irregularities considered in this study show that the overall trend is similar. The relatively small differences may be accounted for regional construction practices. It is concluded that initial-phase seismic assessment procedures based on architectural features yield in somewhat similar results independent of their bases. However, the differences in the scores emphasize the proper selection of the method based on the regional structure characteristics.

Structural Design of Nakanoshima Festival Tower

  • Okada, Ken;Yoshida, Satoshi
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.173-183
    • /
    • 2014
  • Nakanoshima Festival Tower is a 200 m high-rise complex building which contains a renewed 2700-seat capacity concert hall known as "Festival Hall" and offices including headquarter of a news company. In order to build up an office tower on the hall which requires large open space, a giant truss system is employed. The giant trusses being composed of mega-trusses and belt-trusses support all the building weight above them and transfer the load to the outside of the hall. The building also requires high seismic resistance performance for a news company. Application of mid-story seismic isolation enables the building to satisfy high-level seismic resistance criteria.

TORANOMON HILLS - Super High-Rise Building on Urban Highway -

  • Hitomi, Yasuyoshi;Takahashi, Hiroshi;Karasaki, Hidenori
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.167-171
    • /
    • 2014
  • TORANOMON HILLS is the main building of a large-scale re-development project located in the center of Tokyo. This high-rise building has a height of 247 m and 52 floors above ground, 5 floors below ground, and $62m{\times}80m$ in plan. It is used as hotel, residential facilities, offices, shops and conference facilities. The super structure is mainly a rigid steel frame with response-control devices, using concrete-filled steel tube columns. The underground section is a mixed structure composed of steel, steel-reinforced concrete and reinforced concrete framings. The piled-raft foundation type is used. The remarkable feature of this high-rise building is that the motorway runs through the basements of the building, which makes it stand just above the motorway. This condition is an important factor of the building design. The plan shape is designed to fit along the curve of the motorway. Special columns at the corners are required to avoid placing columns in the motorway. This special column is a single inclined column in the lower floors that branches into two columns in the mid-floors to suit the column location in the upper floors. The cast steel joint is used for the branching point of each special column to securely transfer the stress.

지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계 (Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.