• Title/Summary/Keyword: microwave scattering mechanism

Search Result 5, Processing Time 0.021 seconds

Experimental Measurement System for 3-6 GHz Microwave Breast Tomography

  • Son, Seong-Ho;Kim, Hyuk-Je;Lee, Kwang-Jae;Kim, Jang-Yeol;Lee, Joon-Moon;Jeon, Soon-Ik;Choi, Hyung-Do
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • This paper presents an experimental measurement system for 3-6 GHz microwave tomography (MT) of the breast. The measurement system is constructed as a minimal test bed to verify key components such as the sensing antennas, radio frequency (RF) transceiver, sensing mechanism, and image reconstruction method for our advanced MT system detecting breast cancer at an early stage. The test bed has eight RF channels operating at 3 to 6 GHz for high spatial resolution and a two-axis scanning mechanism for three-dimensional measurement. The measurement results from the test bed are shown and discussed.

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

Broadband metamaterial absorber using resistive layers

  • Kim, Y.J.;Yoo, Y.J.;Hwang, J.S.;Son, H.M.;Rhee, J.Y.;Kim, K.W.;Lee, Y. P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.359.1-359.1
    • /
    • 2016
  • The electromagnetic (EM) properties of media, such as propagation, focusing and scattering, strongly rely on the electric permittivity and the magnetic permeability of media. Recently, artificially-created metamaterials (MMs) composed of periodically-arranged unit cells with tailored electric permittivity and magnetic permeability have drawn wide interest due to their capability of adjusting the EM response. MM absorbers using the conventional sandwich structures usually have very high absorption at a certain frequency, and the absorption properties of MMs can be adjusted simply by changing the geometrical parameters of unit cell. In this work, we suggested an incident-angle-independent broadband perfect absorber based on resistive layers. We analyze the absorption mechanism based on the impedance matching with the free space and the distribution of surface currents at specific frequencies. From the simulation, the absorption was expected to be higher than 96% in 1.4-6.0 GHz. The corresponding experimental absorption was found to be higher than 96% in 1.4-4.0 GHz, and the absorption turned out to be slightly lower than 96% in 4.0-6.0 GHz owing to the irregularity in the thickness of resistive layers.

  • PDF

EUV AND SOFT X-RAY EMISSION IN CLUSTERS OF GALAXIES

  • BOWYER STUART
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.295-297
    • /
    • 2004
  • Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (${\~}$Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.