• 제목/요약/키워드: microwave emission

검색결과 158건 처리시간 0.025초

Ni-Grain Size Dependent Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma-Enhanced Chemical Vapor Deposition and Field Emission Properties

  • Choi, Young-Chul;Jeon, Seong-Ran;Park, Young-Soo;Bae, Dong-Jae;Lee, Young-Hee;Lee, Byung-Soo;Park, Gyeong-Su;Choi, Won-Bong;Lee, Nae-Sung;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.231-234
    • /
    • 2000
  • Vertically aligned carbon nanotubes were synthesized on Ni-coated Si substrates using microwave plasma-enhanced chemical vapor deposition. The grain size of Ni thin films was varied with the RF power density during the RF magnetron sputtering process. It was found that the diameter, growth rate, and density of carbon nanotubes could be controlled systematically by the grain size of Ni thin films. With decreasing the grain size of Ni thin films, the diameter of the nanotubes decreased, whereas the growth rate and density increased. High-resolution transmission electron microscope images clearly demonstrated synthesized nanotubes to be multiwalled. The number of graphitized wall decreased with decreasing the diameter. Field emission properties will be further presented.

  • PDF

SOLAR CYCLE VARIATION OF MICROWAVE POLAR BRIGHTENING AND EUV CORONAL HOLE OBSERVED BY NOBEYAMA RADIOHELIOGRAPH AND SDO/AIA

  • Kim, Sujin;Park, Jong-Yeop;Kim, Yeon-Han
    • 천문학회지
    • /
    • 제50권4호
    • /
    • pp.125-129
    • /
    • 2017
  • We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) $193{\AA}$ and $171{\AA}$ on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of Gopalswamy et al. (1999) that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

EFFECTS OF ATMOSPHERIC WATER AND SURFACE WIND ON PASSIVE MICROWAVE RETRIEVALS OF SEA ICE CONCENTRATION: A SIMULATION STUDY

  • Shin, Dong-Bin;Chiu, Long S.;Clemente-Colon, Pablo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.892-895
    • /
    • 2006
  • The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water and water vapor and surface wind on surface emissivity on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor’s field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric and surface effects tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. In particular, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations over marginal ice zones.

  • PDF

메이서와 레이서 I

  • 조철
    • 전기의세계
    • /
    • 제18권6호
    • /
    • pp.58-63
    • /
    • 1969
  • 필자는 메이서와 레이서에 대하여 되돌고이면 평이하게 정성적으로 기술하려고 한다. "Maser"란 말은 Microwave Amplification by Stimulated Emission of Radiation. 또 "Laser"란 Light Amplification by Stimulated Emission of Radiation의 약자이다. 이 메이서나 레이서는 진공관 원리에서 사용되는 자유전자대신 원자의 구속전자를 사용하여 에너지를 발생하든가 증폭작용을 하고 있다. 자극방사 (Stimulated emission)란 말은 원자에서 에너지 방사가 있기 위해서는 구속전자에 자극을 줘야하기 때문에 생긴 것이다. microwave란 말을 붙인 것은 전자에너지중 이 주파수범위내에 해당되는것에만 이용된다는 것이고 이와 마찬가지로 광(light)은 전자복사중 이 빛의 파장범위에서 작용된다는 것을 말한다. 따라서 이 메이서나 레이서는 매우 높은 주파수 범위에서 사용되는 에너지 발생장치 또는 증폭기라고 생각할 수 있다. 이 메이서나 레이서의 동작원리는 진공관증폭기의 동작원리와 다르므로 따라서 그 동작원리를 이해하려면 새로운 개념이 필요하게된다. 과학기술의 발달과 함께 과거의 전자기긱의 성능은 그 한계에 도달하게 되었고 통신, 천문학, 의학, 산업, 과학연구분야등에서 이 메이서와 레이서는 새로운 기회와 가능성을 제시해주고 있다.운 기회와 가능성을 제시해주고 있다.

  • PDF

Selective Growth of the Carbon Nanofibers at the Groove Area of the MgO Substrate by the Iridium Catalyst

  • Kim, Sung-Hoon
    • 한국세라믹학회지
    • /
    • 제41권12호
    • /
    • pp.880-883
    • /
    • 2004
  • Carbon nanofibers could be selectively formed at the groove area of the MgO substrate using microwave plasma-enhanced chemical vapor deposition system. Iridium metal was used as a catalyst layer for the formation of the carbon nanofibers. The growth direction of the carbon nanofibers was vertical to the substrate surface. The selectively grown iridium-catalyzed carbon nanofibers show around $1.8V/{\mu}m$ turn-on voltage and $1.0\;mA/cm^2$ field emission current density at $2.65\;V/{\mu}m$ in the field emission measurement.

파수영역법에 의한 PCB에서의 방사전계 계산 (Calculation of the Radiated E-Field from PCB by spectral Domain Analysis.)

  • 김동일;김형근;정세모
    • 한국항해학회지
    • /
    • 제23권2호
    • /
    • pp.61-66
    • /
    • 1999
  • It is being more and more difficult to suppress emissions from electronic products using PCB(Printed Circuit Board) to the limit. Therefore, the exact evaluation of the emission from PCB has been more important to reduce the required time and the cost at the design phase of the products, especially on board ship's equipments. This research has evaluated the emission radiated from PCB based on the theoretical approach of SDA(Spectral Domain Analysis), which is available to analyze microwave stripline, coplanar line, patch antenna, etc. According to the theoretical results, it has been clearly shown that the emission radiated from PCB is reduced as the thickness of PCB is thinner, the permittivity of PCB is higher, the length of stripline is shorter, and the frequency is lower.

  • PDF

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • 최주성;이한성;이내성
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

AKARI AND SPINNING DUST: INVESTIGATING THE NATURE OF ANOMALOUS MICROWAVE EMISSION VIA INFRARED SURVEYS

  • Bell, Aaron C.;Onaka, Takashi;Doi, Yasuo;Sakon, Itsuki;Usui, Fumihiko;Sakon, Itsuki;Ishihara, Daisuke;Kaneda, Hidehiro;Giard, Martin;Wu, Ronin;Ohsawa, Ryou;Mori-Ito, Tamami;Hammonds, Mark;Lee, Ho-Gyu
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.97-99
    • /
    • 2017
  • Our understanding of dust emission, interaction, and evolution, is evolving. In recent years, electric dipole emission by spinning dust has been suggested to explain the anomalous microwave excess (AME), appearing between 10 and 90 Ghz. The observed frequencies suggest that spinning grains should be on the order of 10nm in size, hinting at polycyclic aromatic hydrocarbon molecules (PAHs). We present data from the AKARI/Infrared Camera (IRC) due to its high sensitivity to the PAH bands. By inspecting the IRC data for a few AME regions, we find a preliminary indication that regions well-fitted by a spinning-dust model have a higher $9{\mu}m$ than $18{\mu}m$ intensity vs. non-spinning-dust regions. Ongoing efforts to improve the analysis by using DustEM and including data from the AKARI Far Infrared Surveyor (FIS), IRAS, and Planck High Frequency Instrument (HFI) are described.