• Title/Summary/Keyword: microtubule root

Search Result 9, Processing Time 0.027 seconds

Uitrastructure of Cryptoglena pigra from Korea

  • Kim, Jong-Im;Shin, Woong-Ghi
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.325-331
    • /
    • 2007
  • Cryptoglena pigra Ehrenberg from Korea was a photosynthetic euglenoid alga, which had typical characteristics of the Euglenales. The ultrastructure examination of C. pigra revealed certain features which were distinctly photosynthetic euglenoid: one U-shaped chloroplast with thylakoid membranes; two paramylon grains appressed to both sides of the chloroplast; eyespot associated with the chloroplast but not part of it. Three flagellar roots were associated with the two basal bodies. The four-membered dorsal root arose from the dorsal body and extended anteriorly following the reservoir membrane. At the base of the reservoir the dorsal band was nucleated by the dorsal root and it ran anteriorly between the reservoir membrane and eyespot. The dorsal band was continued with the microtubules of the canal and the pellicle. The singlet dorsal microtubules at the transition level arranged into doublets by a successive linkage of the existing adjacent microtubules, and the doublets rearranged into the cytoskeletal microtubules that were continuous with four microtubules in pellicles. Finally, the sixteen ridges gave rise to the pellicular ridges. The five to six-membered ventral root extended anteriorly into a cytoplasmic pocket through the reservoir and lined a cytoplasmic pocket.

Cortex Mori Extract Induces Cancer Cell Apoptosis Through Inhibition of Microtubule Assembly

  • Hwang, Pyoung-Han;Nam, Sang-Yun;Yi, Ho-Keun;Lee, Jung-Chang;Kim, Jae-Cheol;Song, Chang-Ho;Park, Jin-Woo;Lee, Dae-Yeol;Kim, Jung-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.191-196
    • /
    • 2002
  • The water extract from the root bark of Cortex Mori (CM, Morus alba L.: Sangbaikpi), a mulberry tree, has been known in Chinese traditional medicine to have antiphlogistic, diuretic, and expectorant properties. In this study, the cytotoxicity of CM against tumor cells and its mechanism was examined . CM exhibited cytotoxic activity on K-562, B38O human leukemia cells and B16 mouse melanoma cells at concentrations of > 1 mg/ml. A DNA fragmentation, PARP cleavage, and nuclear condensation assay showed that those cells exposed to CM underwent apoptosis. The water extract of Scutellarie Radix (SR) was used as a negative control and showed no cytotoxicity in those cells. The flow cytometric profiles of the CM-treated cells were also indicative of apoptosis. However, they did not appear to exert the G1 arrest, which is observed in other tubulin inhibitor agents such as vincristine, taxol. The protein-binding test using Biacore and a microtubule assembly-disassembly assay provided evidence showing that CM bound to the tubulins resulting in 3 markets inhibition of the assembly, but not the disassembly of microtubules. The possible nonspecific effect of the CM extract could be excluded due to the results using SR, which did not affect the assembly process. Overall, the water extract of CM induces apoptosis of tumor cells by inhibiting microtubule assembly.

Effect of Colchicine on the Growth and Gravitropic Response via Ethylene Production in Arabidopsis Roots

  • Kim, Seon Woong;Park, Arom;Ahn, Dong Gyu;Kim, Soon Young
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.597-603
    • /
    • 2018
  • Inhibitory effect of colchicine on growth and gravitropic responses in Arabidopsis root was explored to find whether there was an involvement of ethylene production. It has been known that cytoskeleton components are implicated in sedimentation of statoliths to respond to gravitropism and growth. The root growth was inhibited by 25% and 40% over control for 8 hr treatment of colchicine at a concentration of $10^{-5}M$ and $10^{-7}M$, respectively. The roots treated with colchicine at the concentration of $10^{-7}M$ showed the same pattern as control in 3 hr, however, gravitropic response was decreased in the next 5 hr. The colchicine treatment at the concentration of $10^{-5}M$ inhibited the gravitropic response resulting in $60^{\circ}$ of curvature. In order to better understand the role of colchicine, the production of ethylene was measured with and without the treatment of colchicine. Colchicine increased the ethylene production by 20% when compared to control via the activation of ACC oxidase and ACC synthase activity. These results suggest that the inhibition of the growth and gravitropic responses of Arabidopsis roots by the treatment of colchicine could be attributed to the rearrangement of microtubule, and increase of ethylene production.

Ultrastructure and Filtrating Function of the Ciliated Epithelial Cells of Foregut in Urechis unicinctus (개불(Urechis unicinctus) 전장 섬모 상피세포의 미세구조와 여과기능)

  • Shin, Kil-Sang;Lee, Sun-Hee
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.435-446
    • /
    • 1998
  • It is suggested that Urechis unicinctus is a filler feeder as like many tide and watery invertebrates which filtrate food materials by ciliary movement. However, the structure of the filter is not yet known in U. unicinctus, nor the filtering mechanism is not well understood. This study reveals ciliated epithelial cells in the foregut and the features of the cilia are good accord with that of known filtrating apparatus of other tide animals. This may implies that the foregut is in function of filtration and the food materials are filtrated by the ciliary movement. With the observation of the filtrating apparatus in the foregut, the intestine of U. unicinctus can be functionally compartmented into 3 parts. These are already known midgut and hindgut in function of digestion and respiration respectively, and the foregut in function of filtrating apparatus for foods. The filtrating apparatus of U. unicinctus is composed of the pseudostratified columnar epithelial cells with numerous cilia. The cilia are well differentiated kinocilia with the typical microtubule pattern, kinetosome and cilia roots. There are two kinds of striated cilia roots, the main root and the accessory root. The main root is extended perpendicularly from the cell surface to basement membrane and the short accessory root is branched with an acute angle of about $80^{\circ}$ from the main root at level of basal plate of the kinetosome. The spacial approaches of the main root with the large fused form of mitochondria is one of the characteristic features which might be in structural consideration an intimate association between energy source and energy mass consuming cell organelles.

  • PDF

Ultrastructure of the flagellar apparatus in cryptomorphic Cryptomonas curvata (Cryptophyceae) with an emphasis on taxonomic and phylogenetic implications

  • Nam, Seung Won;Shin, Woongghi
    • ALGAE
    • /
    • v.31 no.2
    • /
    • pp.117-128
    • /
    • 2016
  • Cryptomonas curvata Ehrenberg is a photosynthetic freshwater flagellate and the type species of the genus Cryptomonas. We examined the flagellar apparatus of cryptomorphic C. curvata by transmission electron microscopy. The major components of the flagellar apparatus are the non-keeled rhizostyle (Rhs), striated fibrous root (SR), striated fiber-associated microtubular root (SRm), mitochondrion-associated lamella (ML), and two types of microtubular roots (3r and 2r). The non-keeled Rhs originate at the ventral basal body and consist of two types of microtubule bands extending together into the middle of the cell. The SR and SRm extend parallel to the left side of the cell. The ML originates from the ventral basal body and is a plate-like fibrous structure associated with mitochondria. The 3r extends from the dorsal basal body toward the dorsal anterior of the cell. The 2r originates between the two basal bodies and extends shortly to the left of the cell. The overall configuration of the flagellar apparatus is most similar to that previously reported for C. pyrenoidifera. These results demonstrate that the features of the flagellar apparatus are useful for distinguishing closely related species and inferring phylogenetic relationships among taxa.

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots (옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과)

  • Kim, Chungsu;Mulkey, Timothy J.;Kim, Jong-Sik;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

Induction of Autophagy and Apoptosis by the Roots of Platycodon grandiflorum on NCI-H460 Human Non-small Lung Carcinoma Cells (길경(桔梗)에 의한 NCI-H460 인체 비소세포폐암 세포에서의 autophagy 및 apoptosis 유발 효과)

  • Hong, Su-Hyun;Han, Min-Ho;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Choi, Yung-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • Objectives: The root of Platycodon grandiflorum (PG) has been known to possess a range of pharmacological activities including anti-cancer, anti-inflammatory, and anti-oxidant effects. The present study was designed to investigate whether or not PG-induced cell death was connected with autophagy and apoptosis in NCI-H460 human lung cancer cells. Methods: Effects on the cell viability and apoptotic activity were quantified using MTT assays and flow cytometry analysis, respectively. Protein activation was measured by immunoblotting. Autophagy was measured by LC3 immunofluorescence and immunoblotting. ROS production and loss of mitochondria membrane potential (MMP) were checked with flow cytometry analysis. Results: Following exposure to PG, NCI-H460 cell proliferation decreased simultaneously inducing autophagic vacuoles and up-regulation of microtubule-associated protein 1 light chain 3 and beclin-1 protein expressions. Interestingly, pre-treated with autophagy inhibitors, 3-methyladenin or bafilomycin A1 further triggered reduction of cell viability. PG treatment also induced apoptosis that was related modulation of Bcl-2 family proteins, death receptors and activation of caspases. In addition, PG stimulation clearly enhanced loss of MMP and reactive oxygen species (ROS) generation. Conclusions: Our results suggest that PG elicited both autophagy and apoptosis by increasing loss of MMP and ROS production. PG induced-autophagy may play a cell protective role.

Attenuation of Oxidative Stress-Induced HepG2 Cellular Damage by Cirsiumjaponicum Root Extract (HepG2 세포에서 대계 추출물에 의한 산화적 스트레스 유발 세포 손상의 억제)

  • Da Jung Ha;Seohwi Kim;Byunwoo Son;Myungho Jin;Sungwoo Cho;Sang Hoon Hong;Yung Hyun Choi;Sang Eun Park
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1002-1014
    • /
    • 2023
  • The root of Cirsium japonicum var. maackii (Maxim.) has long been used in traditional medicine to prevent the onset and progression of various diseases and has been reported to exert a wide range of physiological effects, including antioxidant activity. However, research on its effects on hepatocytes remains scarce. This study used the human hepatocellular carcinoma HepG2 cell line to investigate the antioxidant activity of ethanol extract of C. japonicum root (EECJ) on hepatocytes. Hydrogen peroxide (H2O2) was used to mimic oxidative stress. The results showed that EECJ significantly reverted the decrease in cell viability and suppressed the release of lactate dehydrogenase in HepG2 cells treated with H2O2. Moreover, an analysis of changes in cell morphology, flow cytometry, and microtubule-associated protein light chain 3 (LC3) expression showed that EECJ significantly inhibited HepG2 cell autophagy induced by H2O2. Furthermore, it attenuated H2O2-induced apoptosis and cell cycle disruption by blocking intracellular reactive oxygen species and mitochondrial superoxide production, indicating strong antioxidant activity. EECJ also restored the decreased levels of intracellular glutathione (GSH) and enhanced the expression and activity of superoxide dismutase and GSH peroxidase in H2O2-treated HepG2 cells. Although an analysis of the components contained in EECJ and in vivo validation using animal models are needed, these findings indicate that EECJ is a promising candidate for the prevention and treatment of oxidative stress-induced liver cell damage.