• Title/Summary/Keyword: microstructure observation

Search Result 380, Processing Time 0.026 seconds

Frog-inspired programmable nano-architectures for skin patches and medical applications

  • Kim, Da Wan;Baik, Sang Yul;Kim, Jungwoo;Kim, Ji Won;Pang, Changhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.366-366
    • /
    • 2016
  • Nanoscale observation of attachment systems of animals has revealed various exquisite multiscale architectures for essential functions such as gecko's locomotion, beetles' wing fixation, octopuses' sucking and crawling. In particular, the hierarchical 3-dimensional hexanonal nano-architectures in the tree frog's adhesion is known to have the capability of the enhancement of adhesion forces on the wet or rough surfaces due to the conformal contacts against rough surfaces and water-drainable micro channels. Here, we report that tree frog-inspired patches using unique artificial 3-dimensional hexagonal structures can be exploited to form reversibly enhanced adhesion against various highly curved and rough surfaces in dry and wet condition. To investigate the adhesion effect of micro-channels, we changed the arrangement of microstructure and spacing gaps between micro-channels. In addition, we introduced the 3-dimensional hexagonal hierarchical architectures to artificial patches to enhance to conformal contacts on the various rough surfaces such as skin and organs. Using the robust adhesion properties, we demonstrated the self-drainable and comfortable skin-attachable devices which can measure EKG (electrokardiogramme) for in-vitro diagnostics. As a result, bio-inspired programmable nano-architectures can be applied in versatile devices such as, medical patches, skin-attachable electronics etc., which would shed light on future smart, directional and reversible adhesion systems.

  • PDF

A Study on Formation of Ni-Tl-P deposits by Electroless Plating (무전해도금에 의한 Ni-Tl-P 피막형성에 관한 연구)

  • 류일광;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.126-134
    • /
    • 2000
  • This study investigated the bath compositions and plating conditions and crystal structure used for achieving nickel-thallium-phosphorus deposits by means electroless plating. The electroless nickel-thallium-phosphorus deposits were achieved with a bath using sodium hypophosphite as the reducing agent and sodium citrate as the complexing agent. The depositing rate was 10.5mg.$cm^{2-1}$ .$hr^{-1 }$ from the optimistic bath composition, 0.1M nickel sulfate, 0.005M thallium sulfate, 0.2M sodium hypophosphite, and 0.05M sodium citrat and the recommended plating conditions, pH 5.5 and $90^{\circ}C$. The composition of alloy deposits determined by X-ray analysis (EDS) that the Thallium was increased with major increasing concentration of complexing agent and thallium ion in bath solution, it decreased according to the increasing concentrations of reduction agent in the bath solution, Bit Phosphorus showed a contrary to the thallium. It was observed from X-ray diffraction analysis, Scanning Electron Microscopy and Transmission Electron Microscopy. The crystalline structure of deposits was amorphous at the first deposited state but it was changed $Ni-T1-Ni_{5}$ $P_2$ polycrystalline when subjected to 1 hour heat treatment of more than $350^{\circ}C$. TEM observation demonstrated that the microstructure was identical to the result of the XRD at as deposited but it became $Ni-Tl-Ni_{5}$ $P_2$ polycrystalline when heated. And grain size was 10-50nm.

  • PDF

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(III) : Effect of Al2O3 Addition on the Mechanical Properities and Microstructures of Ce-TZP (CeO2안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(III) : Ce-TZP의 기계적성질 및 미세조직에 미치는 Al2O3첨가의 영향)

  • 김문일;박정현;강대석;문성환;안계원
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 1990
  • Effect of Al2O3 addition on the mechanical properties and microstructure of Ce-TZP were studied. 12, 14, 16Ce-TZP containing 0-40wt% Al2O3 were prepared by sintering at 155$0^{\circ}C$ for 2h. in air. Density, linear shrinkage, bending strength, Vickers hardness, microstructuer and the amount of stress induced phase transformation were examined. Vickers hardness increased linearly with increasing amounts of Al2O3. The amount of transformation and fracture toughness decreased linearly with increasing amount of Al2O3. Linear shrinkage and relative density decreased with increasing Al2O3 content in all composition of Ce-TZP. Grain growth of Ce-TZP was inhibited by Al2O3 dispersion and fracture mode of Ce-TZP/Al2O3 composites transformed from intergranular to transgranular fracture as the amount of Al2O3 increased. TEM observation revealed that Al2O3 particles were located mainly at grain boundaries of ZrO2.

  • PDF

C-Ring Stress Corrosion Test for Inconel 600 Tube and Inconel 690 welded by Nd:YAG Laser (Nd:YAG 레이저로 용접한 인코넬 600관과 인코넬 690의 C링 응력 부식시험)

  • 김재도;문주홍;정진만;김철중
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.288-291
    • /
    • 1998
  • Inconel 600 alloy is used as the material of nuclear steam generator tubing because of its mechanical properties, formability, and corrosion properties. According to reports, the life time of nuclear power plants decreases because of the pitting, intergranular attack, primary water stress corrosion cracking(PWSCC), and intergranular stress corrosion cracking(IGSCC), and denting in the steam generator. The SCC test is very important because of SCC appears in various environment such as solutions, materials, and stress. The C-Rig specimen was made of the steam generator welded sleeve repairing by the pulsed Nd:YAG laser. In the corrosion invironment, corrosion solutions are Primary Water, Caustic, and Sulfate solution and corrosion time is 1624-4877hr. The permitted stress is 30-60ksi.In this C-Ring SCC test is the relationship between corrosion depth, crack and corrosion environment is evaluated. SCC was happens in Sulfate and Corrosion solution but doesn't happen in Primary Water. The corrosion time and stress is very affected by the severely environment of Sulfate or Caustic solution. The microstructure observation indicates that SCC causes interganular failure in the grain boundary of vertical direction.

  • PDF

Synthesis and Properties of Nano-sized Ni-Fe Alloy Particle Dispersed ${Al_2}{O_3}$Nanocomposite (나노크기 Ni-Fe 합금입자 분산${Al_2}{O_3}$ 나노복합재료의 합성 및 특성)

  • Nam, Gung-Seok;O, Seung-Tak;Lee, Jae-Seong;Jeong, Yeong-Geun;Kim, Hyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.986-990
    • /
    • 2001
  • An optimum route to fabricate the $A1_2O_3/Fe-Ni$ alloy nanocomposites with sound microstructure and enhanced mechanical properties as well as magnetism was investigated. To prepare homogeneous nanocomposite powders of Fe-Ni alloy and $Al_2O_3$, the solution-chemistry routes using $Al_2O_3 \; Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders were applied. Microstructural observation of the powder mixture revealed that the Fe-Ni alloy particles of about 20 nm in size were homogeneously surrounded $A1_2O_3$, forming nanocomposite powder. The hot-pressed composite showed improved fracture toughness and magnetic response. These results suggest that the synergy materials with an improved mechanical properties and excellent functionality can be fabricated by controlled powder preparation and consolidation processing.

  • PDF

Analysis of Mechanical Properties with Addition of Zr in Al 2013-T8 Alloy for Galvanizing Equipment (Al 2013-T8 합금에서 Zr 첨가에 따른 기계적 특성 분석)

  • Baek, Min-Sook;Cho, Sa-Hyeon;Park, Man-Bok;Yoon, Dong-Joo;Heo, Ki-Bok
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.444-448
    • /
    • 2016
  • In this study, the recently developed Al 2013 alloy was T8-tempered and, to improve the strength and corrosion-resistance, slight amounts of Zr of 0.2 wt% and 0.5 wt%, respectively, were added and the mechanical properties were analyzed. For microstructure and precipitate analysis, OM observation, XRD analysis, and TEM analysis were performed, and for the mechanical property analysis, hardness and tensile strength tests were done. Also, in order to determine the corrosion rate according to the Zr content, a potentiodynamic polarization test was performed and the properties were compared and analyzed. The size of the precipitate varied with the content of Zr and was finest at Zr content of 0.2 wt%; it grew larger at 0.5 wt%, at which point the hardness value accordingly showed the same trend. On the other hand, as calculated from the aspect of chemical bonding among atoms, it was confirmed that the tensile strength and the corrosion-resistance increased with the same trend.

TEM Observation of Microstructure in Al-Sc alloys (투과전자현미경에 의한 Al-Sc합금의 미세구조 관찰)

  • 이영호;문정호;이갑호;이명현;서원선
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.44-44
    • /
    • 2003
  • Scandium을 소량 첨가한 Al합금은 용체화 처리 후 시효에 의해 강화되며, 합금의 주 강화상은 Ll2 type의 규칙구조를 갖는 A1$_3$Sc상으로 열처리시 아주 미세한 정합의 구형입자로 석출한다. Scandium은 Al합금에서 첨가원소의 at%에 따른 경량화 효과가 Gold 다음으로 크다. 현재까지의 Al-Sc계 합금에 대한 연구는 시효경화에 따른 기계적 특성 변화에 대해서만 이루어져 왔으나 본 연구에서는 투과전자현미경을 이용하여 열처리에 따른 미세조직의 변화, 급냉 상태에서 생성된 A13Sc입자의 형성 및 계면구조, 시효에 따른 석출거동을 규명하였다. 실험에 사용된 alloy는 미국의 Ashurst 사에서 제조된 Al-2wt%Sc모합금과 순도 99.9%의 Al을 혼합하여 Arc melting법으로 제조하였다. Primary A13Sc상은 Ll2 type으로 응고시에 용융상태에서 먼저 핵생성되어 Al의 핵생성 site로 작용한다. 635$^{\circ}C$에서 용체화 처리한 시편에서는 수백 nm 크기를 갖는 $Al_3$Sc상이 계면과 matrix내에 구형으로 존재함을 확인하였다. 수백 nm 크기의 $Al_3$Sc상의 내부에는 역위상 경계(Antiphase boundary)이 존재로 인한 특징적인 contrast가 관찰되었으며, 이 $Al_3$Sc상은 응고시 생성된 작은 $Al_3$Sc상들이 모여져 생성된 것으로 추측된다. 수백 nm 크기 의 $Al_3$Sc사와 Al matrix 사이의 계면에는 격자상수 차이에 의한 많은 edge dislocation들이 관찰된다.

  • PDF

Evaluation of Weldability on Identical and Dissimilar Welding Parts of Austenite Stainless Steel by GTAW (오스테나이트 스테인리스강에 대한 가스텅스텐 아크용접 시동종 및 이종 용접부의 용접성 평가)

  • Han, Min-Su;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.68-74
    • /
    • 2011
  • This papers investigated the mechanical characteristics and the weldability of identical as well as dissimilar welding by GTAW for STS 304 and STS 316L. It is applied to double wall gas pipe of duel fuel engine for LNG carrier. Consequently, the weldability of dissimilar and identical welded zone of STS 304 decreased compared to base metal significantly. The result of microstructure observation for welded zone, a degree of acicular ferrite in welding zone for STS 304 presented more than STS 316L. The hardness of welding zone for STS 304 presented higher value than that for STS 316L by this effect.

Microstructure and Properties of Cu Dispersed Al2O3 Nanocomposites Prepared by Pressureless Sintering (상압소결법으로 제조한 Cu 입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • Lee, Kyong-Hwan;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.280-284
    • /
    • 2009
  • The pressureless sintering behavior of $Al_2O_3$/Cu powder mixtures, prepared from $Al_2O_3$/CuO and $Al_2O_3$/Cu-nitrate, has been investigated. Microstructural observation revealed that $Al_2O_3$ powders with nano-sized Cu particles could be synthesized by hydrogen reduction method. The specimens, pressureless-sintered at $1400^{\circ}C$ for 4 min using infrared heating furnace with the heating rate of $200^{\circ}C$/min, showed the relative density of above 90%. Maximum hardness of 16.1 GPa was obtained in $Al_2O_3$/MgO/Cu nanocomposites. The nanocomposites exhibited the enhanced fracture toughness of 4.3-5.7 $MPa{\cdot}m^{1/2}$, compared with monolithic $Al_2O_3$. The mechanical properties were discussed in terms of microstructural characteristics.

Evaluation of Long Duration Current Impulse Withstand Characteristics of ZnO Blocks for High Voltage Surge Arresters (초고압 피뢰기용 ZnO 소자의 장시간 방전내량 특성 평가)

  • Cho, Han-Goo;Yun, Han-Soo;Kim, Seok-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.398-403
    • /
    • 2006
  • This paper describes the evaluation of the long duration current impulse withstand characteristics of ZnO blocks for high voltage surge arresters. Four ZnO varistors were manufactured with the general ceramic production method and the long duration current impulse withstand test, electrical uniformity evaluation test and microstructure observation were performed. All varistors exhibited high density, which was in the range of $5.42{\sim}5.46g/cm^3$. In the electrical properties, the reference voltage of samples was in the range of $5.11{\sim}5.25\;kV$ and the residual voltage was in the range of $8.314{\sim}8.523\;kV$. In the long duration current impulse withstand test, sample No.2 and No.3 failed at the 2nd and 4th shot of series impulse currents, respectively, but the rest survived 18 shots during the test. Before and after this test, the variation ratio of the residual voltage of samples survived was below 0.5 %, which was in the acceptance range of 5 %. According to the results of the test, it is thought that if the soldering method is improved, ZnO varistors would be possible to apply to the high voltage arresters like the station class and transmission line arresters in the near future.