• Title/Summary/Keyword: microstructure observation

Search Result 380, Processing Time 0.025 seconds

A Study on the Deep drawing drawability and Analyzing process of AZ31B Magnesium Sheet at Warm and Hot temperature (AZ31B 마그네슘 판재의 온,열간 딮드로잉 성형성 및 공정해석)

  • Han, S.H.;Choo, D.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.48-52
    • /
    • 2006
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures (200, 250, 300, 350 and $400^{\circ}C$), and forming speed (20, 50, 100 mm/min), thickness (0.5, 0.8, 1.0, 1.4 mm). The deep drawing process of circular cup and square cup were used in forming experiments. Experimental and FEM analysis are performed to investigate drawability and affection of controlled blank holding force. Through the controlled blank holding force, drawability was improved. This result is verified by FEM analysis. Through the observation of microstructure, the main cause is investigated as a quantity of the dynamic recrystallization.

  • PDF

Sintering Behavior of $B_4C-SiC$ Composite ($B_4C-SiC$ 복합체의 상압소결거동)

  • 김득중;강을손
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF

Mechanical Properties of Cement Mortar with Polymers (폴리머 모르타르의 기계적 특성)

  • 정민철;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.745-752
    • /
    • 1994
  • A polymer reinforced grouts using ordinary portland cement mortar and water soluble polymer{polyvinyl alcohol(PVA), styrene-butadiene rubbre(SBR), etylene-vinyl acetate copolymer(EVA)} were made. The mechanical properties of the hardened specimens were investigated through the observation of the microstructure and application of fracture mechanics. When the PVA, SBR and EVA was added with 1.5 wt% to the grouts, the compressive strength were about 54 MPa, 63 MPa and 68 MPa respectively, and the flexural strength was about 11 MPa, 12.8 MPa, and 13.6 MPa respectively, and Young's modulus was about 3.8 GPa, 4.4 GPa and 4.6 GPa respectively, and critical stress intensity was about 0.73 MNm-1.5, 0.85 MNm-1.5 and 0.9 MNm-1.5 respectively. It can be considered that the strength improvement of polymer mortar grouts may be due to the removal of macropores and the increase of various fracture toughness effects, such as grain bridging, frictional interlocking and polymer bridging.

  • PDF

Phase Transformation and Mechanical Properties of Reaction Sintered Mullite-Zirconia (Yttria) Composite (반응소결된 물라이트-지르코니아(이트리아) 복합체의 상변태와 기계적 성질에 관한 연구)

  • 오경영;장성도
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.549-555
    • /
    • 1991
  • Mullite-zirconia (0∼4 mol% yttria) composites were obtained by In-situ sintering of zircon and alumina mixture, and their mechanical properties were studied in conjuction with microstructure observation. Martensitic transformation temperature (Ms) of zirconia dispersed in the mullite matrix decreased with Y2O3 contents and was about 600$^{\circ}C$ for ZrO2 containing 4 mol% Y2O3. On cooling of this composites, tetragonal to monoclinic phase transformation induced microcracks at the grain boundary of mullite matrix. The microcracks seemed to absorb the fracture energy in stress field during mechanical tests. Therefore, toughening mechanisms of this composite were considered to nucleation and extension of microcrack, and crack deflection mechanism due to the difference of thermal expansion coefficient between matrix and dispersed phase.

  • PDF

Crystallization and Crack Formation in Sol-Gel PLZT Thin Films (졸-겔법에 의한 PLZT 박막의 결정화 및 균열 생성)

  • 안기철;이전국;김호기;노광수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.216-222
    • /
    • 1992
  • PLZT thin films were prepared using sol-gel spin coating. The films mainly consisted of perovskite phase when heat treated at 600$^{\circ}C$ and in O2 or air atmosphere for 2 hours after 7 coating cycles. Cracks were formed when smaller than after 9 coating cycles. When ITO interlayer existed between Corning 7059 glass substrate and the film, cracks were not formed after 9 coating cycles, but cracks were formed after 11 coating cycles because of large volume change of the film contracting on the substrate during the heat treatment. In the observation of microstructure, the thin films have perovskite phase of about 2 $\mu\textrm{m}$ grain size and pyrochlore phase of 100∼200${\AA}$ grain size.

  • PDF

Mechanical Properties of High Strength Cement Composite with Carbon Fiber (탄소섬유 보강 고강도 시멘트 복합체의 기게적 특성에 관한 연구)

  • 전용희;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.139-147
    • /
    • 1993
  • Two sheets of high strength cement paste using ordinary Portland cement and water soluble polymer (polyacrylamide) were made by kneading with a twin roll mill. A carbon fiber layer out between two sheet of the cement paste, and then carbon fiber reinforced high strength cement composites were prepared by pressing them. The mechanical properties of the composites were investigated through the observation of the microstructure and the application of fracture mechanics. When the carbon fiber was added with 0.2 and 0.3wt% to the composites the flexural strength and Young's modulus were about 110∼116MPa and 74∼77GPa respectively, and critical stress intensity was about 3.14MPam1/2. It can be considered that the strength improvement of high strength cement fiber composites may be due to the removal of macropores and the increase of various fracture toughness effects; grain bridging, frictional interlocking, polymer fibril bridging and fiber bridging.

  • PDF

The Effect of Austempering Treatment on Microstructure and Mechanical Properties of NICI and DCI for Rolls Used in Hot Rolling Mill (오스템퍼링 처리가 열간압연롤용 NICI재 및 DCI재의 미세조직 및 기계적 성질에 미치는 영향)

  • Kim, Jae-Jin;Oh, Seok-Jung;Yoo, Kook-Jong;Andy, Tirta;Baek, Eung-Ryul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.251-256
    • /
    • 2009
  • The effect of austempering treatment on mechanical properties of nodular indefinite chilled iron(NICI) and ductile cast iron(DCI) was investigated. In microstructural observation, matrix phase(pearlite and ferrite) was changed to ausferrite after austempering treatment both DCI and NICI. In case of NICI, decomposition of cementite($Fe_3C$) during austempering treatment was induced. After austempering treatment, mechanical properties such as hardness, tensile strength and impact toughness was improved in NICI and DCI. The wear resistance is slightly decreased because of decomposition of cementite during austempering treatment in NICI but impact toughness and strength is dramatically increased.

The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet (변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구)

  • Kim, D.O.;Kang, C.W.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

Mechanical Properties of Cement Mortar with Fibers (섬유보강 시멘트 모르타르의 기계적 특성)

  • 정민철;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.491-498
    • /
    • 1994
  • A fiber reinforced grouts were made using ordinary cement mortar and high effective water reducing agent (naphthalene sulfonate) were made by addition polypropylene fiber and carbon fiber. The physical properties of the grouts were investigated through the observation of the microstructure and the application of fracture mechanics. When the polypropylene fiber and carbon fiber were added respectively with 0.03 wt% to the grouts the compressive strength, flexural strength and Young's modulus were about 60∼63 MPa, 12.2∼12.4 MPa, 4.2∼4.8 GPa and 63∼68 MPa, 12.2∼12.6 MPa, 4.8∼5.1 GPa, and critical stress intensity were about 0.77∼0.82 MNm-1.5, and 0.80∼0.87 MNm-1.5 respectively, It can be considered that the strength improvement of fiber reinforced grouts (FRG) may be due to the removal of macropores and the increase of various fracture toughness, polymer fibril bridging and fiber bridging.

  • PDF

Effects of La2O3 and Ta2O5 on the PTCR Characteristics in Molten Salt Synthesized BaTiO3 (용융염 합성법에 의한 BaTiO3의 PTCR특성에 미치는 La2O3와 Ta2O5의 영향)

  • 윤기현;김동영;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.293-299
    • /
    • 1988
  • The effects of flux KCl and dopants, La2O3 and Ta2O5, on the PTCR characteristics in molten salt synthesized BaTiO3 have been studied. The resistivity of BaTiO3 at room temperature decreases with increasing amount of dopant La2O3 up to 0.2 atom%, and then increases with La2O3 content. In case of dopant Ta2O5, it increases with increasing amount ofthe dopant. These results could be explained by observation of the microstructure and defect equation. From the results of complex impedance-frequency characteristics, the grain resistances are almost same but the resistances at the grain boundary are quite different.

  • PDF