• 제목/요약/키워드: microstructure and magnetic properties

검색결과 306건 처리시간 0.022초

$Bi_2O_3$ 첨가하여 소결한 $Y_1Ba_2Cu_3O_{7-y}$계의 초전도성질 (Properties of Superconducting Oxide $Y_1Ba_2Cu_3O_{7-y}$ Sintered with $Bi_2O_3$)

  • 박성;임호빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1988년도 춘계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 1988
  • Electrical and magnetic properties of $Y_1Ba_2Cu_3O_7-y$ sintered with $Bi_2O_3$ have been investigated by levitation experiment and the measurement of electrical resistivity. The effects of $Bi_2O_3$ addition on the microstructure of the sintered specimens were also investigated. The electrical resistivity in the normal state is smaller in $Y_{0.85}Bi_{0.15}Ba_2Cu_3O_{7-y}$, where the Bi is substituted into Y site, than in the basic compound $Y_1Ba_2Cu_3O_{7-y}$ due to improved microstructure. On the other hand, the microstructure is poor and electrical resistivity is larger in the $Y_1Ba_2Cu_3O_{7-y}$ sintered with excess $Bi_2O_3$. It appears that the impurity in grain boundary affect the electrical properties significantly but has little effect on the magnetic property.

  • PDF

Magnetic Pulsed Compaction(MPC)법으로 성형된 Cu 나노 분말 성형체의 미세구조 및 기계적 특성 (Nanostructures and Mechanical Properties of Copper Nano Powder Compacted by Magnetic Pulsed Compaction (MPC) Method)

  • 이근희;김민정;김경호;이창규;김흥회
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.124-132
    • /
    • 2002
  • Nano Cu powders, synthesized by Pulsed Wire Evaporation (PWE) method, have been compacted by Magnetic Pulsed Cojpaction(MPC) method. The microstructure and mechanical properties were analyzed. The optimal condition for proper mechanical properties with nanostructure was found. Both pure nano Cu powders and passivated nano Cu powders were compacted, and the effect of passivated layer on the mechanical properties was investigated. The compacts by MPC, which had ultra-fine and uniform nanostructure, showed higher density of 95% of theoretical density than that of static compaction. The pur and passivated Cu compacted at $300^{\circ}C$ exhibited maximum hardnesses of 248 and 260 Hv, respectively. The wear resistance of those compacts corresponded to the hardness.

Effects of seed geometry on the crystal growth and the magnetic properties of single grain REBCO bulk superconductors

  • Lee, Hwi-Joo;Park, Soon-dong;Jun, Bung-Hyuck;Kim, Chan-Joong;Lee, Hee-Gyoun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.33-39
    • /
    • 2017
  • This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin $30mm{\times}30mm$ rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.

Al-Fe-Cr-Ti 나노결정 합금분말의 자기펄스 성형 및 마모 특성 (Magnetic Pulsed Compaction of nanostructured Al-Fe-Cr-Ti Powder and wear properties)

  • 김준호;홍순직
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.528-530
    • /
    • 2008
  • The effect of consolidation temperature on the microstructure, density and mechanical properties (especially, wear property) of $Al_{92.5}-Fe_{2.5}-Cr_{2.5}-Ti_{2.5}$ alloy fabricated by gas atomization and magnetic pulsed compaction was investigated. All consolidated alloys consisted of homogeneously distributed fine-grained fcc-Al matrix and intermetallic compounds. Relative higher mechanical properties in the MPCed specimen were attributed to the retention of the nanostructure in consolidated bulk without cracks. The as consolidated bulk by magnetic pulsed compaction showed the enhanced wear properties than that of a general consolidation process. In addition, the wear mechanism and fracture mode of MPCed bulk was discussed.

  • PDF

자기펄스 가압 성형장치를 이용한 분말성형 (Consolidation of Powders by magnetic pulsed compaction)

  • 김준호;김효설;구자영;이정구;이창규;홍순직
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.390-393
    • /
    • 2008
  • In this research, we introduce a new process for the consolidation of different types of powders such as metal and ceramic powders by using a magnetic pulsed compaction (MPC). The successful consolidation of many kinds of powers including nanopowder by MPC has been presented. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructure of the MPCed materials. It was found that effective properties of high strength and full density maintaining nanoscal microstructure were achieved. finally, optimization of the compaction parameters and sintering conditions could lead to the good consolidation of powders (metal, ceramic, nano-powder) with higher density, and even further enhanced mechanical properties.

  • PDF

Crystalline Behavior and Microstructure Analysis in Fe73.28Si13.43B8.72Cu0.94Nb3.63 Alloy

  • Oh, Young Hwa;Kim, Yoon Bae;Seok, Hyun Kwang;Kim, Young-Woon
    • Applied Microscopy
    • /
    • 제47권1호
    • /
    • pp.50-54
    • /
    • 2017
  • The microstructure, the crystallization behavior, and magnetic properties of FeSi-based soft magnetic alloys (FINEMET) were investigated using transmission electron microscopy, X-ray diffraction, and coercive force measurements. The amorphous $Fe_{73.28}Si_{13.43}B_{8.72}Cu_{0.94}Nb_{3.63}$ alloys particles, prepared in $10^{-4}$ torr by gas atomization process, were heat treated at $530^{\circ}C$, $600^{\circ}C$, and $670^{\circ}C$ for 1 hour in a vacuum of $10^{-2}$ torr. Nanocrystalline Fe precipitation was first formed followed by the grain growth. Phase formation and crystallite sizes was compared linked to its magnetic behavior, which showed that excellent soft magnetic property can directly be correlated with its microstructure.

MAGNETIC PROPERTIES OF NANOCRYSTALLINE (Fe,Co)-B-Al-M (M=Nb/Mo/Ta) ALLOYS

  • Kang, D.B.;Cho, W.S.;Kim, T.K.;Cho, Y.S.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.483-486
    • /
    • 1995
  • Soft magnetic properties of Fe-based (Fe,Co)-B-Al-M (M=Nb, Mo or Ta) nanocrystalline alloy have been investigated. The alloy obtained directly form the rapid solidification process. Microstructure of the alloy is a mixtu re of ultrafine bcc Fe(Co) nanocrystallines and a small amount of retained amorphous phase. Heat treatment of as-prepared alloys improves soft magnetic properties in high frequency range. ${(Fe_{.85}Co_{.15})}_{70}B_{18}Al_{10}Ta_{6}$ alloy alloy annealed at $500^{\circ}C$ for 1 h shows the most improved soth magnetic properties among the alloy examined. Average grain size of the nanocystalline is about 10 nm.

  • PDF

용탕인출법으로 제조한 퍼말로이 박판의 미세구조와 자기적 특성의 상관관계 (The Relationship between Microstructure and Magnetic Properties of Permalloys Fabricated by Melt Drag Casting)

  • 박성용;임경묵;남궁정;김문철;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.475-478
    • /
    • 2005
  • Permalloys were successfully fabricated by melt drag casting in the present study, and their variation of microstructure and consequent magnetic properties were investigated as a function of Si contents and annealing temperature. The increases in Si content and annealing temperature resulted in the increases of grain size and amount of $Ni_3Fe$ ordered phase. Both the grain size and $Ni_3Fe$ ordered phase controlled by Si and annealing temperature had a important role on permeability of permalloys.

  • PDF

A Study on the Microstructures and Electromagnetic Properties of Al-Co/AlN-Co Thin Films

  • Han, Chang-Suk;Han, Seung-Oh
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.16-22
    • /
    • 2011
  • Al-Co/AlN-Co multilayer films with different layer thicknesses were prepared by using a two-facing target type D.C sputtering (TFTS) system. The deposited films were annealed isothermally at different temperatures and their microstructure, magnetic properties and resistivity were investigated. The magnetization of as-deposited films is very small irrespective of layer thickness. It was found that annealing conditions and layer thickness ratio (LTR) of Al-Co to AlN-Co can control the microstructure as well as the physical properties of the prepared films. The resistivity and magnetization increase and the coercivity decreases with decreasing LTR. High resistivity and sufficient magnetization were obtained for the films with LTR = 0.35. Films having such considerable magnetization and resistivity will be a potential candidate to be used for a high density recording material.