• Title/Summary/Keyword: microstructural stability

Search Result 81, Processing Time 0.027 seconds

Effects of Dysprosium and Thulium addition on microstructure and electric properties of co-doped $BaTiO_3$ for MLCCs

  • Kim, Do-Wan;Kim, Jin-Seong;Noh, Tai-Min;Kang, Do-Won;Kim, Jeong-Wook;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.2-48.2
    • /
    • 2010
  • The effect of additives as rare-earth in dielectric materials has been studied to meet the development trend in electronics on the miniaturization with increasing the capacitance of MLCCs (multi-layered ceramic capacitors). It was reported that the addition of rare-earth oxides in dielectrics would contribute to enhance dielectric properties and high temperature stability. Especially, dysprosium and thulium are well known to the representative elements functioned as selective substitution in barium titanate with perovskite structure. The effects of these additives on microstructure and electric properties were studied. The 0.8 mol% Dy doped $BaTiO_3$ and the 1.0 mol% Tm doped $BaTiO_3$ had the highest electric properties as optimized composition, respectively. According to the increase of rare-earth contents, the growth of abnormal grains was suppressed and pyrochlore phase was formed in more than solubility limits. Furthermore, the effect of two rare-earth elements co-doped $BaTiO_3$ on the dielectric properties and insulation resistance was investigated with different concentration. The dielectric specimens with $BaTiO_3-Dy_2O_3-Tm2O_3$ system were prepared by design of experiment for improving the electric properties and sintered at $1320^{\circ}C$ for 2h in a reducing atmosphere. The dielectric properties were evaluated from -55 to $125^{\circ}C$ (at $1KHz{\pm}10%$ and $1.0{\pm}0.2V$) and the insulation resistance was examined at 16V for 2 min. The morphology and crystallinity of the specimens were determined by microstructural and phase analysis.

  • PDF

The Effect of Process Variables on Mechanical Properties and Formability in GTA Welds of Commercial Pure Titanium Sheet (순 Ti 박판 GTA 용접부의 기계적 성질 및 성형성에 미치는 공정변수의 영향)

  • Kim, Jee-Hoon;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Nho-Kwang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • In this work, the effect of welding variables on weldability of gas tungsten arc(GTA) welding was investigated with experimental analysis for a commercial pure(CP) titanium (Grade.1). The GTA welding tests on sheet samples with 0.5mm in thick were carried out at different process variables such as arc length, welding speed and electrode shape. In order to search an optimum arc length with full penetration, bead- on-plate welding before butt-welding were performed with different arc length conditions. From the bead- on-plate welding results, the optimum condition considering arc stability and electrode loss was obtained in the arc length of 0.8mm. Butt-welding tests based on the arc length of 0.8mm were carried out to achieve the optimum conditions of welding speed and electrode shape. Optimum conditions of welding speed and electrode shape were suggested as 10 mm/s and truncated electrode shape, respectively. It was successfully validated by the microstructural observation, tensile tests, micro-hardness tests and formability tests.

Sheet Resistance and Microstructure Evolution of Cobalt/Nickel Silicides with Annealing Temperature (코발트/니켈 복합실리사이드의 실리사이드온도에 따른 면저항과 미세구조 변화)

  • Jung Young-soon;Cheong Seong-hwee;Song Oh-sung
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.389-393
    • /
    • 2004
  • The silicide layer used as a diffusion barrier in microelectronics is typically required to be below 50 nm-thick and, the same time, the silicides also need to have low contact resistance without agglomeration at high processing temperatures. We fabricated Si(100)/15 nm-Ni/15 nm-Co samples with a thermal evaporator, and annealed the samples for 40 seconds at temperatures ranging from $700^{\circ}C$ to $1100^{\circ}C$ using rapid thermal annealing. We investigated microstructural and compositional changes during annealing using transmission electron microscopy and auger electron spectroscopy. Sheet resistance of the annealed sample stack was measured with a four point probe. The sheet resistance measurements for our proposed Co/Ni composite silicide was below 8 $\Omega$/sq. even after annealing $1100^{\circ}C$, while conventional nickel-monosilicide showed abrupt phase transformation at $700^{\circ}C$. Microstructure and auger depth profiling showed that the silicides in our sample consisted of intermixed phases of $CoNiSi_{x}$ and NiSi. It was noticed that NiSi grew rapidly at the silicon interface with increasing annealing temperature without transforming into $NiSi_2$. Our results imply that Co/Ni composite silicide should have excellent high temperature stability even in post-silicidation processes.

Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials

  • Harianawala, Husain Hatim;Kheur, Mohit Gurunath;Apte, Sanjay Krishnaji;Kale, Bharat Bhanudas;Sethi, Tania Sanjeev;Kheur, Supriya Mohit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.456-461
    • /
    • 2014
  • PURPOSE. Translucency and colour stability are two most important aspects for an aesthetic dental restoration. Glass ceramic restorations are popular amongst clinicians because of their superior aesthetic properties. In the last decade, zirconia has generated tremendous interest due to its favorable mechanical and biological properties. However, zirconia lacks the translucency that lithium disilicate materials possess and therefore has limitations in its use, especially in esthetically demanding situations. There has been a great thrust in research towards developing translucent zirconia materials for dental restorations. The objective of the study was to evaluate and compare the transmittance of a translucent variant of zirconia to lithium disilicate. MATERIALS AND METHODS. Two commercially available zirconia materials (conventional and high translucency) and 2 lithium disilicate materials (conventional and high translucency) with standardized dimensions were fabricated. Transmittance values were measured for all samples followed by a microstructural analysis using a finite element scanning electron microscope. One way analysis of variance combined with a Tukey-post hoc test was used to analyze the data obtained (P=.05). RESULTS. High translucency lithium disilicate showed highest transmittance of all materials studied, followed by conventional lithium disilicate, high translucency zirconia and conventional zirconia. The difference between all groups of materials was statistically significant. The transmittance of the different materials correlated to their microstructure analysis. CONCLUSION. Despite manufacturers' efforts to make zirconia significantly more translucent, the transmittance values of these materials still do not match conventional lithium disilicate. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.

Effects of Chitosan Addition on Physical Properties and Crystallization of Poly(3-hydroxybutyric acid) Film (Chitosan 첨가가 Poly(3-hydroxybutyric acid) 필름의 물리적 특성 및 결정구조에 미치는 영향)

  • 김미라;구진경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.475-481
    • /
    • 2002
  • Blend films of poly(3-hydroxybutyric acid) (PHB) with chitosan were prepared, and their Physical properties and crystallization were investigated. The degree of crystallinity of PHB/chitosan films by X-ray diffraction decreased with increasing chitosan concentration. In the fourier-transformed infrared spectra, carbonyl peak of PHB became lower with increasing the amount of chitosan. The addition of chitosan to PHB film decreased thermal stability and crystallinity of the blend films. The granular sizes of the films were reduced with the addition of chitosan to the film in the microstructural observation by a scanning electron microscope. Mechanical properties, including tensile strength and percent elongation, of the blend films increased with increasing chitosan ratio in the films. For color of the films, L and b values generally decreased with increasing chitosan ratio, but transparency of the films increased.

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃ (950℃ 순수헬륨 분위기에서 크리프 파단된 Alloy 617의 미세구조적 고찰)

  • Lee, Gyeong-Geun;Jung, Su-Jin;Kim, Dae-Jong;Kim, Woo-Gon;Park, Ji-Yeon;Kim, Dong-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.596-603
    • /
    • 2011
  • The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.

Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang;Shimanoe, Hiroki;Nakabayashi, Koji;Miyawaki, Jin;Choi, Jong-Eun;Jeon, Young-Pyo;Yoon, Seong-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.358-364
    • /
    • 2018
  • An isotropic pitch precursor for fabricating carbon fibres was prepared by co-carbonization of ethylene bottom oil(EBO) and polyvinyl chloride (PVC). Various pre-treatments of EBO and PVC, and a high heating rate of $3^{\circ}C/min$ with no holding time, were evaluated for their effects on the oxidative stabilization process and the mechanical stability of the resulting fibres. Our stabilization process enhanced the volatilization, oxidative reaction and decomposition properties of the precursor pitch, while the addition of PVC both decreased the onset time and accelerated the oxidative reaction. Aliphatic carbon groups played a critical role in stabilization. Microstructural characterization indicated that these were first oxidised to carbon-oxygen single bonds and then converted to carbon-oxygen double bonds. Due to the higher heating rate and lack of a holding step during processing,the resulting thermoplastic fibers did not completely convert to thermoset materials, allowing partially melted, adjacent fibres to fuse. Fiber surfaces were smooth and homogeneous. Of the various methods evaluated herein, carbon fibers derived from pressure-treated EBO and PVC exhibited the highest tensile strength. This work shows that enhancing the naphthenic component of a pitch precursor through the co-carbonization of pre-treated EBO with PVC improves the oxidative properties of the resulting carbon fibers.

A Study on Microstructure Formation during Directional Solidification of a Hypoeutectic Al-11.3Si-3.5Cu alloy (아공정 Al-11.3Si-3.5Cu 합금의 응고조직 형성거동에 관한 연구)

  • Seo, Heesik;Gu, Jiho;Park, Kyungmi;Lee, Jeongseok;Lee, Jehyun;Chung, Wonsub
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.897-905
    • /
    • 2012
  • Directional solidification experiments were carried out in a hypoeutectic Al-11.3Si-3.5Cu system to investigate the microstructural evolution with the solidification rate. At a fixed temperature gradient, a dendritic microstructure was observed at a constant speed of more than $25{\mu}ms^{-1}$, a cellular interface developed at $5{\mu}ms^{-1}$ and the growth rate of $0.5{\mu}ms^{-1}$ led to the stability of the planar interface. The results revealed that primary silicon phases formed among cells, even though the studied Al-Si alloy system formed the composition within a hypoeutectic silicon composition. This suggests that the liquid concentration among cells during solidification reached a higher concentration, i.e., the eutectic concentration. It is, however, interesting that primary silicon phases did not form during a dendritic growth of more than $25{\mu}ms^{-1}$. These experimental observations are explained using the theoretical models on the interface temperatures.

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.