• Title/Summary/Keyword: microstructural analysis

Search Result 533, Processing Time 0.025 seconds

Fabrication of Tungsten Powder Mixtures with Nano and Micro Size by Reduction of Tungsten Oxides (텅스텐 산화물의 환원을 이용한 나노/마이크로 크기 텅스텐 혼합분말 제조)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.513-517
    • /
    • 2017
  • An optimum route to fabricate a hybrid-structured W powder composed of nano and micro size powders was investigated. The mixture of nano and micro W powders was prepared by a ball milling and hydrogen reduction process for $WO_3$ and W powders. Microstructural observation for the ball-milled powder mixtures revealed that the nano-sized $WO_3$ particles were homogeneously distributed on the surface of large W powders. The reduction behavior of $WO_3$ powder was analyzed by a temperature programmed reduction method with different heating rates in Ar-10% $H_2$ atmosphere. The activation energies for the reduction of $WO_3$, estimated by the slope of the Kissinger plot from the amount of reaction peak shift with heating rates, were measured as 117.4 kJ/mol and 94.6 kJ/mol depending on reduction steps from $WO_3$ to $WO_2$ and from $WO_2$ to W, respectively. SEM and XRD analysis for the hydrogen-reduced powder mixture showed that the nano-sized W particles were well distributed on the surface of the micro-sized W powders.

Characteristics of the HVOF_sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coationg Layer (HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 특성)

  • Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.849-855
    • /
    • 1998
  • The purpose of this study was performed to compare to the characteristics (microstructure, phase change and hardness, erosion rate) of HVOF sprayed coatings with 20wt% NiCr claded and 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder. In the case of the 20wt% NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ powder, microstructural feature showed that the primary $\textrm{Cr}_{3}\textrm{C}_{2}$ was remained in the coating but was barely remained in the mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ coating. As a results of XRD analysis, both 20wt%NiCr claded and 7wt% NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder was decomposed during spraying but the degree of decomposition of the 20wt%NiCr claded was lower than 7wt%NiCr mixed $\textrm{Cr}_{3}\textrm{C}_{2}$ powder. After spraying the mixed powder for microhardness was higher than claded $\textrm{Cr}_{3}\textrm{C}_{2}$ powder and which was increased up to $\textrm{Hv}_{300}$= 1665 after heat treatment to $1000^{\circ}C$. however. 20wt%NiCr claded $\textrm{Cr}_{3}\textrm{C}_{2}$ became to decrease at $600^{\circ}C$ which was the maximum.

  • PDF

Microstructural Analysis of Anodic Oxide Layers Formed in a Boric Acid Solution for Al Electrolytic Capacitor Foils (붕산용액에서 형성된 알루미늄 전해콘덴서용 박의 화성피막 조직분석)

  • Kim, Seong-Gap;Kim, Seong-Su;O, Han-Jun;Jo, Nam-Don;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.329-334
    • /
    • 2001
  • Microstructures of barrier-type oxide layers on aluminum was studied by XRD, TEM and RBS. Fer formation of oxide layer. aluminum was anodized in a boric acid solution. The thickness of the oxide film subjected to applied voltage increased linearly at ratio of 1.54nm/V. For oxide layer anodized at 300V, amorphous structure of oxide layer was not transformed after heat treatment at 50$0^{\circ}C$ , while for oxide layers anodized at higher voltages the amorphous structure crystallized into a ${\gamma}$-alumina without any heat treatment. It was also found that the amorphous structure of oxide layer formed at 100V transformed into crystalline structure by electron irradiation. The structure was identified as ${\gamma}$-alumina.

  • PDF

Growth Mechanisms of Graphite Spherulites in the Nodular Cast Iron and the High-pressure-treated Ni-C alloy (구상흑연 주철과 고압처리된 Ni-C 합금에서 구상화 흑연의 성장 기구)

  • Park, Jong-Ku;Ahn, Jae-Pyoung;Kim, Gyeungho;Kim, Soo-Chul
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.200-207
    • /
    • 2000
  • The growth mechanisms of graphite spherulite both in the nodular cast iron and the high pressuretreated Ni-C alloy were investigated by SEM, HRTEM and EELS. The internal microstructure and lattice image of graphite spherulite extracted from Ni-C alloy were compared with those of graphite spherulite extracted from the nodular cast iron. The ratios of $sp^2$ and $sp^3$ bonding in the respective graphite spherulite measured by EELS, are compared each other. The graphite spherulite of Ni-C alloy had little internal defects and much $sp^3$ carbon species compared to that of the nodular cast iron. Present difference in microstructural features and bonding characters indicated that the graphite spheruites in the high pressuretreated Ni-C alloy grew by different mechanism compared with those in the nodular cast iron.

  • PDF

Effect of heat-treatment parameter of YBCO film by TFA-MOD process (TFA-MOD법에 의한 YBCO 박막의 열처리변수 효과)

  • Jang, Seok-Hern;Lim, Jun-Hyung;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Joo, Jin-Ho;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • We fabricated YBCO coated conductors (CCs) by TFA-MOD process and evaluated microstructure, texture formation, and critical temperature ($T_c$) and current ($I_c$). YBCO precursor solution was synthesized using metal-trifluoroacetates and dip coated on $LaAlO_3$(LAO) substrate. The phase formation and microstructure was characterized by X-ray diffraction and scanning electron microscopy (SEM) and the degree of texture was evaluated by pole-figure analysis. The CC was heat-treated in various calcining temperatures ($370^{\circ}C-460^{\circ}C$) and firing temperatures ($750^{\circ}C-800^{\circ}C$). As fired at $775^{\circ}C$ for 4h, the CC had the highest $T_c$ of 89.5 K and $I_c$ of 40 A/cm-width ($J_c=2.0\;MA/cm^2$). Microstructural observation indicated that the YBCO film was dense and homogeneous and had a strong cube texture without formation of second phase and its in-plane full-width at half-maxima; $5.2^{\circ}$ under optimum condition.

  • PDF

Effect of welding condition on microstructures of weld metal and mechanical properties in Plasma-MIG hybrid welding for Al 5083 alloy (알루미늄 5083 합금의 플라즈마 미그 하이브리드 용접시 용접부 미세조직과 기계적 성질 변화에 미치는 용접조건의 영향)

  • Park, Sang-Hyeon;Lee, Hee-Keun;Kim, Jin-Young;Chung, Ha-Taek;Park, Young-Whan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • The effect of welding condition on microstructure and mechanical property of Plasma-MIG Hybrid Weld between Al 5083 plates(thickness : 10mm) was investigated. 1 pass weld without any defects such as puckering, undercut, and lack of fusion was obtained by 150~200A of plasma current and 5~7mm of welding speed. Gas porosities and shrinkage porosities were existed in the weld near fusion line. As welding speed and plasma current were decreasing, the area fraction of porosity was increasing. The hardness of the weld is increasing as welding speed. On the basis of microstructural analysis, Mg segregated region near dendrite boundaries tends to increase with the welding speed. In the result of hardness test, Distribution of hardness in fusion zone showed little change with the plasma current. However, when the welding speed increased, hardness in weld metal markdly increased. It could be considered that effect of heat input to growth of the dendritic solidification structures. Based on tensile test, tensile properties of weld metal was predominated by area fraction of porosities. Consequently, tensile properties can be controlled by formation site and area fraction of porosity.

The Effect of Process Variables on Mechanical Properties and Formability in GTA Welds of Commercial Pure Titanium Sheet (순 Ti 박판 GTA 용접부의 기계적 성질 및 성형성에 미치는 공정변수의 영향)

  • Kim, Jee-Hoon;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Nho-Kwang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • In this work, the effect of welding variables on weldability of gas tungsten arc(GTA) welding was investigated with experimental analysis for a commercial pure(CP) titanium (Grade.1). The GTA welding tests on sheet samples with 0.5mm in thick were carried out at different process variables such as arc length, welding speed and electrode shape. In order to search an optimum arc length with full penetration, bead- on-plate welding before butt-welding were performed with different arc length conditions. From the bead- on-plate welding results, the optimum condition considering arc stability and electrode loss was obtained in the arc length of 0.8mm. Butt-welding tests based on the arc length of 0.8mm were carried out to achieve the optimum conditions of welding speed and electrode shape. Optimum conditions of welding speed and electrode shape were suggested as 10 mm/s and truncated electrode shape, respectively. It was successfully validated by the microstructural observation, tensile tests, micro-hardness tests and formability tests.

Fabrication of Porous W by Freeze-Drying Process of Camphene Slurries with Spherical PMMA and WO3 Powders (구형 PMMA와 WO3 분말이 혼합된 Camphene 슬러리의 동결건조에 의한 W 다공체 제조)

  • Lee, Han-Eol;Jeon, Ki Cheol;Kim, Young Do;Suk, Myung-Jin;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.602-606
    • /
    • 2015
  • Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of $WO_3$ and spherical PMMA of 20 vol% were frozen at $-25^{\circ}C$ and dried for the sublimation of the camphene. The green bodies were heat-treated at $400^{\circ}C$ for 2 h to decompose the PMMA; then, sintering was carried out at $1200^{\circ}C$ in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about $400^{\circ}C$, and $WO_3$ was reduced to metallic W at $800^{\circ}C$ without any reaction phases. The sintered bodies with $WO_3$-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.

Thixoforming Characteristics of Metal Matrix Composites (Phase identification of $SiC_p/AZ91HP$ Mg composite) (금속기 복합재료의 틱소포밍 특성 ($SiC_p/AZ91HP$ Mg 복합재료의 상분석을 중심으로))

  • Lee, Jung-Il;Kim, Young-Jig
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.281-289
    • /
    • 1999
  • The stirred and thixoformed $SiC_p/AZ91HP$ Mg composites are studied on the basis of microstructural analysis using transmission electron microscopy (TEM). The products of interfacial reaction are identified as $Mg_2Si$, MgO and $Mg_{17}Al_{12}$ phases and the crystallized phases are found to be orthorhmbic $Al_6Mn$ and decagonal T phases. It is shown that $Mg_2Si$ and $Mg_{17}Al_{12}$ phases are found at the surface of $SiC_p$ and $Al_6Mn$ is found near interface and crystallized on the matrix. Phase identification is carried out by crystallographic work based on primitive cell volume, zero order Laue zone (ZOLZ) patterns and single convergent beam electron diffraction (CBED) patterns containing higher order Laue zone ring from a nanosized region.

  • PDF

Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting (2상 스테인레스 주강의 공냉 열처리 적용 가능성)

  • Kim, Bong-Whan;Yang, Sik;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.