• Title/Summary/Keyword: microstructural

Search Result 2,132, Processing Time 0.026 seconds

Effect of Re and Ru Addition on the Solidification and Solute Redistribution Behaviors of Ni-Base Superalloys (니켈계 초내열합금의 응고 및 용질원소의 편석 거동에 미치는 레늄 및 루테늄 첨가의 영향)

  • Seo, Seong-Moon;Jeong, Hi-Won;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.882-892
    • /
    • 2011
  • The influence of rhenium (Re) and ruthenium (Ru) addition on the solidification and solute redistribution behaviors in advanced experimental Ni-base superalloys has been investigated. A series of model alloys with different levels of Re and Ru were designed based on the composition of Ni-6Al-8Ta and were prepared by vacuum arc melting of pure metallic elements. In order to identify the influence of Re and Ru addition on the thermo-physical properties, differential scanning calorimetry analyses were carried out. The results showed that Re addition marginally increases the liquidus temperature of the alloy. However, the ${\gamma}^{\prime}$ solvus was significantly increased at a rate of $8.2^{\circ}C/wt.%$ by the addition of Re. Ru addition, on the other hand, displayed a much weaker effect on the thermo-physical properties or even no effect at all. The microsegregation behavior of solute elements was also quantitatively estimated by an electron probe microanalysis on a sample quenched during directional solidification of primary ${\gamma}$ with the planar solid/liquid interface. It was found that increasing the Re content gradually increases the microsegregation tendency of Re into the dendritic core and ${\gamma}^{\prime}$ forming elements, such as Al and Ta, into the interdendritic area. The strongest effect of Ru addition was found to be Re segregation. Increasing the Ru content up to 6 wt.% significantly alleviated the microsegregation of Re, which resulted in a decrease of Re accumulation in the dendritic core. The influence of Ru on the microstructural stability toward the topologically close-packed phase formation was discussed based on Scheil type calculations with experimentally determined microsegregation results.

Effect of Postmortem Phases on Lamb Meat Quality: A Physicochemical, Microstructural and Water Mobility Approach

  • Ge, Yue;Zhang, Dequan;Zhang, Huimin;Li, Xin;Fang, Fei;Liang, Ce;Wang, Zhenyu
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.802-815
    • /
    • 2021
  • To investigate the effect of postmortem phases on lamb meat quality, the physicochemical quality, microstructure and water mobility of oyster cut, short loin, knuckle and silverside muscles from Small-Tail Han sheep were evaluated in the pre-rigor, rigor mortis and post-rigor phases. Pre-rigor lamb meat had higher pH and water holding capacity (WHC), whereas lower CIE L*, b*, hue angle values than rigor mortis and post-rigor meat (p<0.05). The Warner-Bratzler shear force (WBSF) values were higher in rigor mortis short loin and silverside than their pre-rigor and post-rigor counterparts, pre-rigor short loin had lower WBSF value than its post-rigor counterpart (p<0.05). Muscle fibers shrank laterally and longitudinally during the onset of rigor mortis. Rigor mortis and postrigor lamb meat exhibited wide I-bands, dark A-bands, short sarcomeres and large inter-myofibrillar spaces. The shift of immobilized water to free water and repulsion from the intra-myofibrillar space to the extracellular space result in the increase of water loss in rigor mortis and post-rigor lamb meat. The results of the principal component analysis (PCA) indicated that rigor mortis and post-rigor lamb meat had similar quality properties but different from pre-rigor lamb meat. In conclusion, the lamb meat in the pre-rigor phase had good tenderness, color and WHC. The results of this research could provide some theoretical references for lamb meat production and processing.

Hot Corrosion and Thermally Grown Oxide Formation on the Coating of Used IN738LC Gas Turbine Blade (사용된 IN738LC 가스 터빈 블레이드 코팅층의 고온 부식 및 Thermally Grown Oxide 형성 거동)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • In this study, defects generated in the YSZ coating layer of the IN738LC turbine blade are investigated using an optical microscope and SEM/EDS. The blade YSZ coating layer is composed of a Y-Zr component top coat layer and a Co component bond coat layer. A large amount of Cr/Ni component that diffused from the base is also measured in the bond coat. The blade hot corrosion is concentrated on the surface of the concave part, accompanied by separation of the coating layer due to the concentration of combustion gas collisions here. In the top coating layer of the blade, cracks occur in the vertical and horizontal directions, along with pits in the top coating layer. Combustion gas components such as Na and S are contained inside the pits and cracks, so it is considered that the pits/cracks are caused by the corrosion of the combustion gases. Also, a thermally grown oxide (TGO) layer of several ㎛ thick composed of Al oxide is observed between the top coat and the bond coat, and a similar inner TGO with a thickness of several ㎛ is also observed between the bond coat and the matrix. A PFZ (precipitate free zone) deficient in γ' (Ni3Al) forms as a band around the TGO, in which the Al component is integrated. Although TGO can resist high temperature corrosion of the top coat, it should also be considered that if its shape is irregular and contains pore defects, it may degrade the blade high temperature creep properties. Compositional and microstructural analysis results for high-temperature corrosion and TGO defects in the blade coating layer used at high temperatures are expected to be applied to sound YSZ coating and blade design technology.

The Chronic and Acute Toxicity of Traditional Medicines Containing Terminalia chebula

  • ARONGQIQIGE ARONGQIQIGE;Gerelmaa Enebish;Wang Song;Wei Cheng Xi;Anuujin Gantumur;Oyunbaatar Altanbayar;Hirofumi Shimomura;Battogtokh Chimeddorj;Batnairamdal Chuluun;Avarzed Amgalanbaatar
    • Journal of Pharmacopuncture
    • /
    • v.26 no.1
    • /
    • pp.18-26
    • /
    • 2023
  • Objectives: Terminalia chebula, the main ingredient of Altan Arur 5, has been used for many years in traditional medicine. This medicine is more effective than other drugs and is used to treat chronic gastritis and gastrointestinal disorders such as peptic ulcers and esophageal reflux. Other ingredients of Altan Arur 5 are Punica granatum (pomegranate), tulip seeds, black balm, and excreta of Trogopterus xanthipes. The main ingredients of T. chebula are antibacterial and analgesic in traditional medicine. Despite having been used for many years and although many studies have been conducted on the beneficial effects of this medicine and its ingredients, the toxicity of Altan Arur 5 has not yet been elucidated. Therefore, we aimed to study the toxicity of Altan Arur 5 to ensure that it is safe to use. Methods: Acute and chronic toxicity of Altan Arur 5 were assessed in 10 Kunming mice and 8 Sprague-Dawley rats, respectively, in different doses. In the acute toxicity study, Altan Arur 5 was orally administered to Kunming mice in doses of 12 g/kg, 24 g/kg, and 48 g/kg for 14 days. In the chronic toxicity study, it was orally administered to Sprague-Dawley rats in doses of 1.25 g/kg, 2.5 g/kg, and 5 g/kg for 12 weeks. Results: No significant differences were observed in the relative organ weights for mice treated with Altan Arur 5 compared with those in the control group. Furthermore, no macro- or microstructural changes were noted in the organs of any group. Conclusion: Our toxicity testing revealed that the traditional medicine Altan Arur 5 has no toxic effects in vivo.

Archaeometric Characterization of Raw Materials and Tempers of Bricks Used in the Brick Tombs during Ungjin Period of Baekje (백제 웅진기 벽돌무덤에 사용된 벽돌의 재료와 첨가물 특성 분석)

  • Sungyoon Jang;Hong Ju Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.571-582
    • /
    • 2022
  • In this study, the raw material and tempers of bricks used in three brick tombs built in Gongju, during the Ungjin period of Baekje were investigated. The royal tomb of King Muryeong, the 6th tomb in the royal tombs, and Kyochonri brick tomb remained in Gongju and the bricks of each site had different shape and physical properties despite their similarity in raw materials. As the results of the mineralogical and microstructural analysis, the bricks of the royal tombs were made of refined raw materials, and were infrequently added crushed bricks(grogs) as a tempering material. On the other hand, thick and elongated pores of bricks from the Kyochonri brick tomb were frequently found, and the remains of plant carbonization are observed in their microstructures. Since the pores are mainly distributed in a thickness of 0.3 to 1 mm, it is estimated that bricks were produced by adding a certain size of the plant to refined soil, and grogs also were added as a tempering material. In particular, it was found that adding plants and grogs in raw materials of bricks caused thick pores or cracks in the internal structure. Since the bricks of the Kyochonri brick tomb have internal cracks and low firing temperature, the ultrasonic velocity of the bricks was lower than that of the royal tomb bricks. It means that the mechanical strength of these bricks were relatively low. Accordingly, it is estimated that the tempering materials, firing temperature, and internal structures of bricks can affect durability of the brick, and it can be thought as a difference in the manufacturing technology of brick making.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

The Performance Evaluation of In-situ Carbonation Mortar Using Gaseous CO2 (기체 CO2를 사용한 In-situ 탄산화 모르타르 성능평가)

  • Changgun Park;Deukhyun Ryu;Seongwoo Choi;Kwangwoo Wi;Seungmin Lim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, two phases were conducted to investigate the direct injection of gaseous CO2 into cement mortar. The aim was to advance carbon capture, utilization, and storage (CCUS) technology by harnessing industrial waste CO2 from the domestic ready-mixed concrete industry. In the first phase, the factors influencing the physical properties of cement mortar when using gaseous CO2 were identified. This included a review of materials to achieve physical properties comparable to a reference formulation. As a result of this phase, it was confirmed that traditional approaches, such as adjusting the water-to-cement ratio, had limitations in achieving the desired physical properties. Consequently, the second phase focused on the optimization of CO2-injected mortar. This involved studying the CO2 application and mixing method for cement mortar. Changes in properties were observed when gaseous CO2 was injected into the mortar. The optimal injection quantity and time to enhance the compressive strength of mortar were determinded. As a result, this study indicated that an extra mixing time exceeding 120 seconds was necessary, compared to conventional mortar. The optimal CO2 injection rate was identified as 0.1 to 0.2 % by weight of cement, taking both flowability and compressive strength performance into account. Increasing the CO2 injection time did not further enhance strength. For this approach to be employed as a CCUS technology, additional studies are required, including a microstructural analysis evaluating the amount of immobilized CO2.

CNN Model for Prediction of Tensile Strength based on Pore Distribution Characteristics in Cement Paste (시멘트풀의 공극분포특성에 기반한 인장강도 예측 CNN 모델)

  • Sung-Wook Hong;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.339-346
    • /
    • 2023
  • The uncertainties of microstructural features affect the properties of materials. Numerous pores that are randomly distributed in materials make it difficult to predict the properties of the materials. The distribution of pores in cementitious materials has a great influence on their mechanical properties. Existing studies focus on analyzing the statistical relationship between pore distribution and material responses, and the correlation between them is not yet fully determined. In this study, the mechanical response of cementitious materials is predicted through an image-based data approach using a convolutional neural network (CNN), and the correlation between pore distribution and material response is analyzed. The dataset for machine learning consists of high-resolution micro-CT images and the properties (tensile strength) of cementitious materials. The microstructures are characterized, and the mechanical properties are evaluated through 2D direct tension simulations using the phase-field fracture model. The attributes of input images are analyzed to identify the spot with the greatest influence on the prediction of material response through CNN. The correlation between pore distribution characteristics and material response is analyzed by comparing the active regions during the CNN process and the pore distribution.

Prediction of Microstructure and Hardness of the Ductile Cast Iron Heat-treated at the Intercritical Temperatures (임계간 온도에서 열처리한 구상흑연주철의 미세조직 및 경도 예측)

  • Nam-Hyuk Seo;Jun-Hyub Jeon;Soo-Yeong Song;Jong-Soo Kim;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.279-285
    • /
    • 2023
  • In order to predict the mechanical properties of ductile cast iron heat treated in an intercritical temperature range, samples machined from cast iron with a tensile strength of 450 MPa were heat-treated at various intercritical temperatures and air-cooled, after which a microstructural analysis and Brinell hardness test were conducted. As the heat treatment temperature was increased in the intercritical temperature range, the ferrite fraction in the ductile cast iron decreased and the pearlite fraction increased, whereas the nodularity and nodule count did not change considerably from the corresponding values in the as-cast condition. The Brinell hardness values of the heat-treated ductile cast iron increased gradually as the heat treatment temperature was increased. Based on the measured alloy composition, the fraction of each stable phase and the hardness model from the literature, the hardness of the ductile cast iron heat treated in the intercritical temperature range was calculated, showing values very similar to the measured hardness data. In order to check whether it is possible to predict the hardness of heat-treated ductile cast iron by using the phase fraction obtained from thermodynamic calculations, the volumes of graphite, ferrite, and austenite in the alloy were calculated for each temperature condition. Those volume fractions were then converted into areas of each phase for hardness prediction of the heat-treated ductile cast iron. The hardness values of the cast iron samples based on thermodynamic calculations and on the hardness prediction model were similar within an error range up to 27 compared to the measured hardness data.

Sintering behavior and electrical properties of transition metal (Ni, Co, Mn) based spinel oxides for temperature sensor applications (복합전이금속(Ni, Co, Mn) 기반 스피넬계 산화물의 소결 거동 및 온도센서 특성 연구)

  • Younghee So;Eunseo Lee;Jinyoung Lee;Sungwook Mhin;Bin Lee;Hyung Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.73-77
    • /
    • 2024
  • The spinel-type oxide (Nix, Mny, Co3-x-y)O4 (NMC) is widely utilized as a material for temperature sensors with a negative temperature coefficient (NTC), finding applications across various industries including electric vehicle battery management systems. Typically, NMC is manufactured using solid-state reaction methods employing powders of Ni, Mn, and Co compounds, with the densification process through sintering recognized as a crucial factor determining the electrical properties of the temperature sensor material. In this study, NMC pellets were synthesized via solid-state reaction and their crystallographic and microstructural characteristics were investigated. Also, the activation energy for densification behavior during the sintering process was determined. According to the analysis results, the room temperature resistance of the NMC pellets was measured at 10.03 Kohm, with the sensitivity parameter, B-value, recorded at 3601.8 K, indicating their potential applicability as temperature sensors across various industrial fields. Furthermore, the activation energy for densification was found to be 273.3 ± 0.4 kJ/mol, providing valuable insights into the thermodynamic aspects of the sintering process of the NMC.