• Title/Summary/Keyword: microstrip structure

Search Result 556, Processing Time 0.024 seconds

A Single Layer Multi Band Microstrip Patch Antenna for GPS L1/L2, GLONASS Receiver Applications (GPS L1/L2, GLONASS 수신기용 다중 대역 단일 패치 안테나)

  • Kim, Ji-Hae;Kim, Mi-Suk;Kim, Jong-Seong;Son, Seok-Bo;Kim, Young-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.990-998
    • /
    • 2011
  • In this paper, we have designed a multi-band single layer microstrip patch antenna with slots for GPS L2/L1, GLONASS receivers. The antenna has dual feed structure and consists of single layer microstrip patch with slots and impedance matching circuit. The antenna specifications are a VSWR(Voltage Standing Wave Ratio) of less than 2.0, RHCP(Right-Hand Circular Polarization) characteristics over the operating frequency bands of GPS L2(1,227.6 MHz)/L1(1,575.42 MHz) and GLONASS(1,602 MHz), the maximum active antenna gain of more than 30 dB and the axial ratio of less than 3 dB. The antenna has been successfully evaluated by various tests.

Design of Microstrip-fed Dual Band Monopole Antenna for WLAN (마이크로스트립 급전 무선랜용 이중대역 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.490-495
    • /
    • 2016
  • In the present study, a microstrip-fed monopole antenna is proposed for wireless local area network (WLAN) operations which cover dual band of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz). In order to obtain its compact structure and good omnidirectional radiation patterns, a modified inverted L-shaped slot separated from ground for impedance matching in 5 GHz band is etched on 2.4 GHz printed monopole antenna. The proposed antenna is designed and fabricated on a FR4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $30{\times}45mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 270 MHz (2.22 ~ 2.48 GHz) in 2.4 GHz band and 890 MHz (5.08 ~ 5.97 GHz) in 5 GHz band respectively. In particular, high gain of more than about 4 dBi and good omnidirectional radiation patterns have been observed over the entire frequency band of interest.

A design of the microstrip phased array antenna with the slot-coupled structure for the base station of mobile communication (슬롯결합구조를 갖는 이동통신 기지국용 마이크로스트립 위상배열 안테나의 설계)

  • 장정필;장병준;윤영중;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3205-3214
    • /
    • 1996
  • In this paper, the microstrip phased array antennas with coupling-slots for the base station of mobile communication is proposed and anlyzed with accurate analysis method which is based on both reciprocity principle and full-wave analysis. The basis functions used for the numerical analysis are determined depending upon the accuracy, convergence properties of the solution, and the computation time. The patch uses 3 EB mode and the slot uses IPWS mode. The designed phased array antenna has 8 slot-coupled microstrip patch array elements and the beam scanning capability is obtained by using the 4-bit PIN-diode phase shifters as switching devices which are consisted of the loaded line phase shifters for 30.deg. and 60.deg. and the reflection type phase shifters for 90.deg. and 180.deg. repectively. The 4-bits phase shifters which aremade by connecting each phase shifter have about 2.deg.-3.deg. phase errors and their insertion loss are about 3dB for each phase state. The fabricated 8-element phased array antenna with 4-bits phase shifters provides 12.deg.-14.deg. beamwidths depending on the scanning angle and is capable of scanning its beam to .+-.45.deg. with 9.deg. intervals, and the gain 12dBi. The overall results show that the slot-coupled phased array antenna has great advantages of wideband, high gain and reduced spurious radiation. Also, the antenna can be made small and thin. Furthermore, the scanning property of this antenna allows for its application in several areas, such as mobile communication system and PCS.

  • PDF

Design of Dual-Band, Dual-Polarized Microstrip Patch Antenna with Two Input Ports (두 입력단자를 갖는 이중대역 이중편파 마이크로스트립 패치 안테나 설계)

  • Jeong Hae-Young;Lee Kwang-Chun;Lee Sung-Jun;Choi Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1164-1170
    • /
    • 2005
  • This paper presents a dual-band, dual-polarized microstrip patch antenna with simple dual-probe feed. The inter-port isolation and cross-polarization are greatly improved by designing feed structure with annular gap between patch and feed-probe. Measured results show that the antenna's inter-port isolation and cross-polarization in each -10 dB return loss bandwidth of $1.84\;GHz\~l.93\;GHz$ and $2.62\;GHz\~2.81\;GHz$ are greater than 21 dB, greater than 22.2 dB and greater than 27 dB, greater than 19 dB, respectively. The antenna gain is about 6.9 dBi in both frequency bands.

Optimum Design of a Dual-Band Microstrip Patch Antenna using the Square CSRR Construction (CSRR 구조 이중대역 마이크로스트립 패치안테나의 최적 설계)

  • Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • In this paper, dual band patch antenna was designed using a CSRR structure with negative values permeability which inserted into the ground plane. We propose an antenna that can be used in dual band f1(1.53GHz) and f2(1.63GHz) for satellite communications by using the CSRR placed on the backside of feeding line, which is a negative shape of SRR. The proposed antenna can be arrayed using microstrip line and can be made smaller than conventional patch antenna. The fabricated antenna has the input reflection coefficient of -12.5dB and -14.5dB at f1 and f2, and the gain of 2dB and -0.8dB, respectively. and it was confirmed that the performance was sufficient in the dual-band.

A Dual Baud Microstrip Antenna with Soft Surface for Gapfiller Applications (Soft Surface를 이용한 신호 중계 장치용 이중 대역 마이크로스트립 안테나)

  • Kim, Byoung-Chul;Ryu, Joon-Gyu;Choo, Ho-Sung;Jang, Dae-Ik;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1145-1160
    • /
    • 2009
  • In this paper, a dual band microstrip antenna with soft surface for gapfiller applications is proposed. The proposed antenna with similar radiation pattern and gain is fabricated on RO4003 substrate with a dielectric constant of 3.38 and a thickness of 0.508 mm, and operates in IEEE 802.11a/b bands. The size of the antenna is $50{\times}56.5{\times}5.5\;mm^3$ and the ground plane size including soft surface structure is $175.0{\times}154.4\;mm^2$. The antenna is fed by coaxial cable. The simulated bandwidths of the antenna are 2.388~2.493 GHz and 5.561~6.051 GHz for VSWR<2. The gains are 10.63 dBi and 10.33 dBi, respectively, for the lower and upper bands.

Design and Fabrication of Deep Attenuation LPF using Meander Microstrip Transmission Line (미앤더 마이크로스트립 전송선을 이용한 고감쇄 LPF 설계 및 제작)

  • Seo, Soo-Duk;Cho, Hak-Rae;Yang, Doo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1734-1739
    • /
    • 2014
  • In this paper, microstrip low pass filter using transmission line with the modified DCRLH structure is designed and fabricated to be removed a spurious resonant mode, and a deep attenuation in stop band. The low pass filter is composed of shunt open-stub to get a deep attenuation and series short-stub to eliminate the spurious harmonics in stop band. In this way, the spurious harmonics occurring on the higher order frequency are suppressed and the filter performance is improved. Insertion loss and VSWR of the fabricated microstrip low pass filter in the passband from DC to 1.5 GHz is 1.26 dB and 1.65, and attenuation on the stopband from 1.84 GHz to 2.18 GHz is less than -100 dB. And also this filter has a good performance for 20 watt power test.

Design of 2.3 GHz BPF Using Microstrip Line Structure (테프론을 이용한 2.3 GHz 협대역 대역통과필터)

  • ;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.148-150
    • /
    • 2002
  • In this paper, a 5-coupled BPF with teflon substrate is presented. In general, for less than 1 GHz frequency, the narrow bandwidth as well as the good characteristic in the rejection frequency band could be realized using lumped elements. However, for higher than 1 GHz frequency, the distributed elements such as microstrip lines need to be used for the design of the desired BPF For less than 2 GHz, the FR4 shows good filter characteristic at low cost. However, in the range of 2 GHz ~ 10 GHz, the filters with FR4 show a big difference between simulation and measurement results. Thus, in such a high frequency region, the teflon is more preferred to the FR4. The center frequency (fc) of the proposed filter is 2.3 GHz, the insertin loss (IL) is 1.2 dB, the return loss (RL) is 30 dB, bandwidth (BW) is 100 MHz, and the size is 8.3 cm $\times$ 4.9 cm.

  • PDF

FEM Analysis of Conduction Noise Absorbers in Microstrip Line (마이크로스트립 라인에서 유한요소법을 이용한 전도노이즈 흡수체의 성능해석)

  • Kim, Sun-Tae;Kim, Sun-Hong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.242-245
    • /
    • 2007
  • Conduction noise attenuation by composite sheets of high magnetic and dielectric loss has been analyzed by using electromagnetic field simulator which employs finite element method. The simulation model consists of microstrip line with planar input/output ports and noise absorbers (magnetic composite sheets containing iron flake particles as absorbent fillers). Reflection and transmission parameters $(S_{11}\;and\;S_{21})$ and power loss are calculated as a function of frequency with variation of sheet size and thickness. The simulated value is in good agreement with measured one and it is demonstrated that the proposed simulation technique can be effectively used in the design and characterization of noise absorbing materials in the RF transmission lines.

Analysis of Slot Coupled Stacked Microstrip Antennas (슬롯결합 적층 마이크로스트립 안테나 특성 해석)

  • 문호원;이정욱;윤영중;박한규
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.37-47
    • /
    • 1995
  • In this paper, the slot coupled stacked microstrip antenna, which has wide bandwidth characteristics because of the double tuning effects from the interactions between two patches and feeding slot and improves distortions of radiation patterns due to spurious radiation from feeder, is analyzed. For the analy- sis Green function in the spectrum domain and Galerkin method is applied with an accurate analysis mode for slot coupled feeding structure using the scattering analysis method. The basis functions are 3 EB modes for patches and 5 PWS modes for feeder. The slot coupled stacked microstrip antennas are designed and fabricated with the center frequency of 11.5 Ghz and 12.0 GHz. The experimental results show the wide bandwidth characteristics of 1.9 ~ 2.2 GHz and agree well with the simulation results which have 15~20% bandwidth.

  • PDF